Experimental Assessment of the Performance of Data Augmentation with Generative Adversarial Networks in the Image Classification Problem

被引:3
|
作者
Karadag, Ozge Oztimur [1 ]
Cicek, Ozlem Erdas [1 ]
机构
[1] Alanya Alaaddin Keykubat Univ, Dept Comp Engn, Antalya, Turkey
关键词
generative adversarial networks; data augmentation; image classification; deep learning;
D O I
10.1109/asyu48272.2019.8946442
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Learning algorithms have almost become a key standard for majority of vision and machine learning problems. Despite its common usage and high performance for many applications, they have certain disadvantages. One major problem with deep learning methods is the size of the dataset to be used for training. The methods require a large dataset for an adequate training. However, a large dataset may not be available for all problems. In such a case, researchers apply data augmentation methods to obtain a larger dataset from a given dataset. For the image classification problem, conventional method for data augmentation is the application of transformation based methods; such as flipping, rotation, blurring etc. Recently, generative models which apply deep learning methods are also commonly used for data augmentation. On the other hand, in case of a too large dataset the classifiers may overfit and end up with a lack of generalization. In this study, we explore the usage of generative adversarial networks for data augmentation in the image classification problem. We evaluate the classification performance with three types of augmentation methods. Dataset is first augmented by two conventional methods; Gaussian blurring and dropout of regions, then by generative adversarial networks. Meanwhile, we observe the behavior of the classifier for various sized datasets with and without data augmentation. We observe that especially in datasets of certain sizes generative adversarial networks can be effectively used for data augmentation.
引用
下载
收藏
页码:48 / 51
页数:4
相关论文
共 50 条
  • [1] Data Augmentation Based on Generative Adversarial Networks for Endoscopic Image Classification
    Park, Hyun-Cheol
    Hong, In-Pyo
    Poudel, Sahadev
    Choi, Chang
    IEEE ACCESS, 2023, 11 : 49216 - 49225
  • [2] Cancer classification with data augmentation based on generative adversarial networks
    Wei, Kaimin
    Li, Tianqi
    Huang, Feiran
    Chen, Jinpeng
    He, Zefan
    FRONTIERS OF COMPUTER SCIENCE, 2022, 16 (02)
  • [3] Cancer classification with data augmentation based on generative adversarial networks
    Kaimin WEI
    Tianqi LI
    Feiran HUANG
    Jinpeng CHEN
    Zefan HE
    Frontiers of Computer Science, 2022, 16 (02) : 69 - 79
  • [4] Cancer classification with data augmentation based on generative adversarial networks
    Kaimin Wei
    Tianqi Li
    Feiran Huang
    Jinpeng Chen
    Zefan He
    Frontiers of Computer Science, 2022, 16
  • [5] GADA: Generative Adversarial Data Augmentation for Image Quality Assessment
    Bongini, Pietro
    Del Chiaro, Riccardo
    Bagdanov, Andrew D.
    Del Bimbo, Alberto
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II, 2019, 11752 : 214 - 224
  • [6] Conditional Generative Adversarial Networks for Data Augmentation in Breast Cancer Classification
    Wong, Weng San
    Amer, Mohammed
    Maul, Tomas
    Liao, Iman Yi
    Ahmed, Amr
    RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING (SCDM 2020), 2020, 978 : 392 - 402
  • [7] Data Augmentation with Generative Adversarial Networks for Grocery Product Image Recognition
    Wei, Yuchen
    Xu, Shuxiang
    Son Tran
    Kang, Byeong
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 963 - 968
  • [8] Auxiliary Conditional Generative Adversarial Networks for Image Data Set Augmentation
    Mudavathu, Kalpana Devi Bai
    Rao, V. P. Chandra Sekhara
    Ramana, K., V
    PROCEEDINGS OF THE 2018 3RD INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2018), 2018, : 263 - 269
  • [9] Conditional Generative Adversarial Networks for Data Augmentation of a Neonatal Image Dataset
    Lyra, Simon
    Mustafa, Arian
    Rixen, Joeran
    Borik, Stefan
    Lueken, Markus
    Leonhardt, Steffen
    SENSORS, 2023, 23 (02)
  • [10] Augmenting Image Classifiers Using Data Augmentation Generative Adversarial Networks
    Antoniou, Antreas
    Storkey, Amos
    Edwards, Harrison
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III, 2018, 11141 : 594 - 603