Sunflower optimization algorithm-based optimal PI control for enhancing the performance of an autonomous operation of a microgrid

被引:29
|
作者
Hussien, A. M. [1 ]
Hasanien, Hany M. [1 ]
Mekhamer, S. F. [1 ]
机构
[1] Future Univ Egypt, Elect Engn Dept, Cairo 11835, Egypt
关键词
Microgrid; Response surface methodology (RSM); Sunflower optimization (SFO); OPTIMAL POWER-FLOW; DISTRIBUTED GENERATION SYSTEMS; VOLTAGE; STRATEGIES; FREQUENCY; DESIGN; SOLVE;
D O I
10.1016/j.asej.2020.10.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a novel application of the sunflower optimization (SFO) algorithm to enhance the performance of the inverter based microgrid. The vector cascaded control method is used to control the inverter which relies on the proportional-integral (PI) controller. The main goal is to select the parameters of the PI controller using the SFO algorithm. The multi-objective function for this research is deduced from the response surface methodology (RSM). The simulation results are tested under three different operating states which are: 1) the system conversion from grid-connected to stand-alone mode, 2) changing the load during stand-alone mode, and 3) symmetrical fault during stand-alone mode. The results verify the flexibility, justification, and applicability of the presented SFO algorithm versus the particle swarm optimization (PSO). (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Ain Shams University.
引用
收藏
页码:1883 / 1893
页数:11
相关论文
共 50 条
  • [1] Water cycle algorithm-based optimal control strategy for efficient operation of an autonomous microgrid
    Hasanien, Hany M.
    Matar, Mahmoud
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2018, 12 (21) : 5739 - 5746
  • [2] Adaptive PI Control Strategy for Optimal Microgrid Autonomous Operation
    Hussien, Ahmed M.
    Kim, Jonghoon
    Alkuhayli, Abdulaziz
    Alharbi, Mohammed
    Hasanien, Hany M.
    Tostado-Veliz, Marcos
    Turky, Rania A.
    Jurado, Francisco
    [J]. SUSTAINABILITY, 2022, 14 (22)
  • [3] Dual Ascent Algorithm-Based Improved Droop Control for Efficient Operation of AC Microgrid
    Jiang, Yajie
    Yang, Yun
    [J]. FRONTIERS IN ELECTRONICS, 2022, 3
  • [4] Coot Bird Algorithms-Based Tuning PI Controller for Optimal Microgrid Autonomous Operation
    Hussien, Ahmed Moreab
    Turky, Rania A.
    Alkuhayli, Abdulaziz
    Hasanien, Hany M.
    Tostado-Veliz, Marcos
    Jurado, Francisco
    Bansal, Ramesh C.
    [J]. IEEE ACCESS, 2022, 10 : 6442 - 6458
  • [5] LMSRE-Based Adaptive PI Controller for Enhancing the Performance of an Autonomous Operation of Microgrids
    Hussien, Ahmed M.
    Turky, Rania A.
    Hasanien, Hany M.
    Al-Durra, Ahmed
    [J]. IEEE ACCESS, 2021, 9 : 90577 - 90586
  • [6] Optimal Interactive Operation of Microgrid Under Demand Response Based on Rolling Optimization Algorithm
    Ma, Xin
    Qu, Hui
    Pei, Wei
    Xiao, Hao
    [J]. RENEWABLE ENERGY INTEGRATION WITH MINI/MICROGRID, 2018, 145 : 97 - 102
  • [7] Hybrid Driving Training and Particle Swarm Optimization Algorithm-Based Optimal Control for Performance Improvement of Microgrids
    Zaki, Dina A. A.
    Hasanien, Hany M. M.
    Alharbi, Mohammed
    Ullah, Zia
    Sameh, Mariam A. A.
    [J]. ENERGIES, 2023, 16 (11)
  • [8] A chaos game optimization algorithm-based optimal control strategy for performance enhancement of offshore wind farms
    Shaheen, Mohamed A. M.
    Hasanien, Hany M.
    Mekhamer, S. F.
    Talaat, Hossam E. A.
    [J]. RENEWABLE ENERGY FOCUS, 2024, 49
  • [9] Optimal Autonomous Control of an Inverter-Based Microgrid Using Particle Swarm Optimization
    Hassan, M. A.
    Abido, M. A.
    [J]. IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 2010), 2010, : 2247 - 2252
  • [10] Improved Genetic Algorithm-Based Optimization Approach for Energy Management Of Microgrid
    Yin, Tianhao
    Du, Chunshui
    Chen, Alian
    Jiang, Tiantian
    Guo, Song
    Zhang, Hongliang
    [J]. 2020 IEEE 9TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (IPEMC2020-ECCE ASIA), 2020, : 3234 - 3239