A Hybrid PBIL-Based Krill Herd Algorithm

被引:5
|
作者
Wang, Gai-Ge [1 ]
Deb, Suash [2 ]
Gandomi, Amir H. [3 ]
Alavi, Amir H. [4 ]
机构
[1] Jiangsu Normal Univ, Sch Comp Sci & Technol, Xuzhou, Peoples R China
[2] Cambridge Inst Technol, Dept Comp Sci & Engn, Ranchi, Bihar, India
[3] Michigan State Univ, BEACON Ctr Study Evolut Act, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
关键词
Global optimization problem; Krill herd; Population-based incremental learning; Multimodal function; PARTICLE SWARM OPTIMIZATION; BIOGEOGRAPHY-BASED OPTIMIZATION; HARMONY SEARCH ALGORITHM; DIFFERENTIAL EVOLUTION; FIREFLY ALGORITHM; BAT ALGORITHM; DESIGN; STRATEGY;
D O I
10.1109/ISCBI.2015.14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When krill herd (KH) is used to solve complicated multimodal functions, sometimes it fails to find the best solutions and cannot converge fast. Herein, we propose a hybrid KH method, called PBILKH, by integrating the KH with the population-based incremental learning (PBIL). In addition, a type of elitism is applied to memorize the krill with the best fitness when finding the best solution. The effectiveness of the PBILKH is verified by various benchmarks and experimental results demonstrate that our PBILKH is well capable of overtaking the KH algorithm and other optimization methods in solving nonlinear problems.
引用
收藏
页码:39 / 44
页数:6
相关论文
共 50 条
  • [1] A Hybrid PBIL-Based ICA Method
    Zhang, Ai-yi
    Quan, Hai-yan
    [J]. COMPUTER SCIENCE AND TECHNOLOGY (CST2016), 2017, : 703 - 710
  • [2] A hybrid PBIL-based harmony search method
    X. Z. Gao
    X. Wang
    T. Jokinen
    S. J. Ovaska
    A. Arkkio
    K. Zenger
    [J]. Neural Computing and Applications, 2012, 21 : 1071 - 1083
  • [3] A hybrid PBIL-based harmony search method
    Gao, X. Z.
    Wang, X.
    Jokinen, T.
    Ovaska, S. J.
    Arkkio, A.
    Zenger, K.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2012, 21 (05): : 1071 - 1083
  • [4] A Comparison of Hybrid Methods of the Krill Herd Algorithm
    Nurhayati, Ai
    Darmoyono, Aditya Gautama
    [J]. PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON APPLIED ENGINEERING (ICAE), 2018,
  • [5] A parallel hybrid krill herd algorithm for feature selection
    Abualigah, Laith
    Alsalibi, Bisan
    Shehab, Mohammad
    Alshinwan, Mohammad
    Khasawneh, Ahmad M.
    Alabool, Hamzeh
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (03) : 783 - 806
  • [6] A parallel hybrid krill herd algorithm for feature selection
    Laith Abualigah
    Bisan Alsalibi
    Mohammad Shehab
    Mohammad Alshinwan
    Ahmad M. Khasawneh
    Hamzeh Alabool
    [J]. International Journal of Machine Learning and Cybernetics, 2021, 12 : 783 - 806
  • [7] Hybrid Monkey Algorithm with Krill Herd Algorithm Optimization for Feature Selection
    Hafez, Ahmed Ibrahem
    Hassanien, Aboul Ella
    Zawbaa, Hossam M.
    Emary, E.
    [J]. 2015 11TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO), 2015, : 273 - 277
  • [8] Performance Evaluation of a PBIL-Based Power System Damping Controller
    Folly, K. A.
    Venayagamoorthy, G. K.
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [9] Hybrid clustering analysis using improved krill herd algorithm
    Laith Mohammad Abualigah
    Ahamad Tajudin Khader
    Essam Said Hanandeh
    [J]. Applied Intelligence, 2018, 48 : 4047 - 4071
  • [10] Hybrid clustering analysis using improved krill herd algorithm
    Abualigah, Laith Mohammad
    Khader, Ahamad Tajudin
    Hanandeh, Essam Said
    [J]. APPLIED INTELLIGENCE, 2018, 48 (11) : 4047 - 4071