Active Set Type Algorithms for Nonnegative Matrix Factorization in Hyperspectral Unmixing

被引:2
|
作者
Sun, Li [1 ]
Han, Congying [2 ]
Liu, Ziwen [2 ]
机构
[1] Shandong Agr Univ, Coll Informat Sci & Engn, Tai An 271018, Shandong, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
美国国家科学基金会;
关键词
CONSTRAINED LEAST-SQUARES; GRADIENT-METHOD;
D O I
10.1155/2019/9609302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hyperspectral unmixing is a powerful method of the remote sensing image mining that identifies the constituent materials and estimates the corresponding fractions from the mixture. We consider the application of nonnegative matrix factorization (NMF) for the mining and analysis of spectral data. In this paper, we develop two effective active set type NMF algorithms for hyperspectral unmixing. Because the factor matrices used in unmixing have sparse features, the active set strategy helps reduce the computational cost. These active set type algorithms for NMF is based on an alternating nonnegative constrained least squares (ANLS) and achieve a quadratic convergence rate under the reasonable assumptions. Finally, numerical tests demonstrate that these algorithms work well and that the function values decrease faster than those obtained with other algorithms.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing
    Jia, Sen
    Qian, Yuntao
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (01): : 161 - 173
  • [2] Hyperspectral Image Unmixing with Nonnegative Matrix Factorization
    Zdunek, Rafal
    [J]. 2012 INTERNATIONAL CONFERENCE ON SIGNALS AND ELECTRONIC SYSTEMS (ICSES), 2012,
  • [3] Hyperspectral unmixing based on nonnegative matrix factorization
    Liu Xue-Song
    Wang Bin
    Zhang Li-Ming
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2011, 30 (01) : 27 - +
  • [4] NONNEGATIVE MATRIX FACTORIZATION WITH COLLABORATIVITY FOR HYPERSPECTRAL UNMIXING
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. 2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
  • [5] A complexity constrained nonnegative matrix factorization for hyperspectral unmixing
    Jia, Sen
    Qian, Yuntao
    [J]. INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2007, 4666 : 268 - +
  • [6] CONSTRAINED NONNEGATIVE MATRIX FACTORIZATION FOR ROBUST HYPERSPECTRAL UNMIXING
    Feng, Fan
    Deng, Chenwei
    Wang, Wenzheng
    Dai, Jiahui
    Li, Zhenzhen
    Zhao, Baojun
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4221 - 4224
  • [7] HYPERSPECTRAL UNMIXING ALGORITHM BASED ON NONNEGATIVE MATRIX FACTORIZATION
    Bao, Wenxing
    Li, Qin
    Xin, Liping
    Qu, Kewen
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6982 - 6985
  • [8] Nonnegative matrix factorization with entropy regularization for hyperspectral unmixing
    Liu, Junmin
    Yuan, Shuai
    Zhu, Xuehu
    Huang, Yifan
    Zhao, Qian
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (16) : 6362 - 6393
  • [9] Robust Collaborative Nonnegative Matrix Factorization for Hyperspectral Unmixing
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Liu, Lin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6076 - 6090
  • [10] Nonlinear Hyperspectral Unmixing With Robust Nonnegative Matrix Factorization
    Fevotte, Cedric
    Dobigeon, Nicolas
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 4810 - 4819