The Evolution of Faster-Than-Nyquist Signaling

被引:38
|
作者
Ishihara, Takumi [1 ]
Sugiura, Shinya [1 ]
Hanzo, Lajos [2 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
[2] Univ Southampton, Dept Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
来源
IEEE ACCESS | 2021年 / 9卷 / 09期
基金
日本科学技术振兴机构; 日本学术振兴会; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Precoding; Frequency-domain analysis; Intersymbol interference; Channel estimation; Information filters; Transceivers; Eigenvalues and eigenfunctions; Capacity; detection; faster-than-Nyquist signaling; interference; precoding; FREQUENCY-DOMAIN EQUALIZATION; JOINT CHANNEL ESTIMATION; SINGLE-CARRIER; EFFICIENT IMPLEMENTATION; COMPLEXITY DETECTION; SPECTRAL EFFICIENCY; TURBO EQUALIZATION; MATRIX COMPUTATION; INDEX MODULATION; MINIMUM DISTANCE;
D O I
10.1109/ACCESS.2021.3088997
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The fifty-year progress of faster-than-Nyquist (FTN) signaling is surveyed. FTN signaling exploits non-orthogonal dense symbol packing in the time domain for the sake of increasing the data rate attained. After reviewing the system models of both the conventional Nyquist-based and FTN signaling transceivers, we survey the evolution of FTN techniques, including their low-complexity detection and channel estimation. Furthermore, in addition to the classic FTN signaling philosophy, we introduce the recent frequency-domain filtering and precoding aided schemes. When relying on precoding, the information rate of FTN signaling becomes related to the eigenvalues of an FTN-specific intersymbol interference matrix, which provides a unified framework for the associated information-theoretic analysis and simplifies the associated power allocation specifically designed for increasing the information rate attained. We show that the FTN signaling scheme combined with bespoke power allocation employing a realistic raised-cosine shaping filter achieves the Shannon capacity associated with ideal rectangular shaping filters.
引用
收藏
页码:86535 / 86564
页数:30
相关论文
共 50 条
  • [1] Faster-Than-Nyquist Signaling
    Anderson, John B.
    Rusek, Fredrik
    Owall, Viktor
    PROCEEDINGS OF THE IEEE, 2013, 101 (08) : 1817 - 1830
  • [2] FASTER-THAN-NYQUIST SIGNALING
    MAZO, JE
    BELL SYSTEM TECHNICAL JOURNAL, 1975, 54 (08): : 1451 - 1462
  • [3] Faster-Than-Nyquist Signaling Introduction
    Esch, Jim
    PROCEEDINGS OF THE IEEE, 2013, 101 (08) : 1815 - 1816
  • [4] Differential Faster-Than-Nyquist Signaling
    Ishihara, Takumi
    Sugiura, Shinya
    IEEE ACCESS, 2018, 6 : 4199 - 4206
  • [5] Faster-Than-Nyquist Signaling: An Overview
    Fan, Jiancun
    Guo, Shengjie
    Zhou, Xiangwei
    Ren, Yajie
    Li, Geoffrey Ye
    Chen, Xi
    IEEE ACCESS, 2017, 5 : 1925 - 1940
  • [6] On coding for Faster-Than-Nyquist Signaling
    Tajan, Romain
    Benammar, Bouchra
    Poulliat, Charly
    Boucheret, Marie-Laure
    2015 IEEE INTERNATIONAL BLACK SEA CONFERENCE ON COMMUNICATIONS AND NETWORKING (BLACKSEACOM), 2015, : 92 - 96
  • [7] Generalized Faster-Than-Nyquist Signaling
    Zhou, Jing
    Li, Daoben
    Wang, Xuesong
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [8] Exploiting faster-than-Nyquist signaling
    Liveris, AD
    Georghiades, CN
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2003, 51 (09) : 1502 - 1511
  • [9] Robust Estimators for Faster-Than-Nyquist Signaling
    Bahri, Zouhir
    IEEE ACCESS, 2022, 10 : 13787 - 13799
  • [10] Faster-than-Nyquist Signaling for Optical Communications
    Qiao, Yaojun
    Zhou, Ji
    Guo, Mengqi
    Tang, Xizi
    Qi, Jia
    Lu, Yueming
    23RD OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC2018), 2018,