Empirical Analysis of Learning-based Malware Detection Methods using Image Visualization

被引:1
|
作者
Sheneamer, Abdullah [1 ]
Alhazmi, Essa [1 ]
Henrydoss, James [2 ]
机构
[1] Jazan Univ, Dept Comp Sci, Jazan, Saudi Arabia
[2] Univ Colorado, Vis & Secur Technol Lab, Colorado Springs, CO 80907 USA
关键词
Malware detection; malware analysis; deep learning; machine learning; malware features;
D O I
10.14569/IJACSA.2022.01304106
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Malware, a short name for malicious software is an emerging cyber threat. Various researchers have proposed ways to build advanced malware detectors that can mitigate threat actors and enable effective cybersecurity decisions in the past. Recent research implements malware detectors based on visualized images of malware executable files. In this framework, a malware binary is converted into an image, and by extracting image features and applying machine learning methods, the malware is identified based on image similarity. In this research work, we implement the Image visualization-based malware detection method and conduct an empirical analysis of vari-ous learners for selecting a candidate learning classifier that can provide better prediction performance. We evaluate our framework using the following malware datasets, Search And RetrieVAl of Malware (SARVAM), Xue-dataset, and Canadian Institutes for Cyber Security (CIC) datasets. Our experiments include the following learning algorithms, Linear Regression, Random Forest, K-Nearest Neighbor (KNN), Classification and Decision Tree (CART), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and deep learning-based Convolutional Neural Network (CNN). This image-visualization-based method proves to be effective in terms of prediction accuracy. Some conclusions emerge from our initial study and find that a Con-volutional Neural Network (CNN) algorithm provides relatively better performance when used against SARvAM and various malware datasets. The CNN model achieved a high performance of F1-score and accuracy in the binary classification task reaching 95.70% and 99.50%, consecutively. The model in the multi-classification task achieved of 95.96% and 99.30% (F1-score and accuracy) for detecting malware types. We find that the KNN model outperforms other traditional classifiers.
引用
收藏
页码:925 / 936
页数:12
相关论文
共 50 条
  • [1] ATMPA: Attacking Machine Learning-based Malware Visualization Detection Methods via Adversarial Examples
    Liu, Xinbo
    Zhang, Jiliang
    Lin, Yaping
    Li, He
    PROCEEDINGS OF THE IEEE/ACM INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS 2019), 2019,
  • [2] Image Visualization based Malware Detection
    Kancherla, Kesav
    Mukkamala, Srinivas
    2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN CYBER SECURITY (CICS), 2013, : 40 - 44
  • [3] On the Influence of Image Settings in Deep Learning-based Malware Detection
    Mercaldo, Francesco
    Martinelli, Fabio
    Santone, Antonella
    Vinod, P.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), 2021, : 669 - 676
  • [4] Malware detection using image-based features and machine learning methods
    Gungor, Aslihan
    Dogru, Ibrahim Alper
    Barisci, Necaattin
    Toklu, Sinan
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2023, 38 (03): : 1781 - 1792
  • [5] Deep Learning-Based Malware Detection Using PE Headers
    Nakrosis, Arnas
    Lagzdinyte-Budnike, Ingrida
    Paulauskaite-Taraseviene, Agne
    Paulikas, Giedrius
    Dapkus, Paulius
    INFORMATION AND SOFTWARE TECHNOLOGIES, ICIST 2022, 2022, 1665 : 3 - 18
  • [6] Malware Detection using Malware Image and Deep Learning
    Choi, Sunoh
    Jang, Sungwook
    Kim, Youngsoo
    Kim, Jonghyun
    2017 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC), 2017, : 1193 - 1195
  • [7] Malware detection based on semi-supervised learning with malware visualization
    Gao, Tan
    Zhao, Lan
    Li, Xudong
    Chen, Wen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 5995 - 6011
  • [8] Machine learning based fileless malware traffic classification using image visualization
    Fikirte Ayalke Demmese
    Ajaya Neupane
    Sajad Khorsandroo
    May Wang
    Kaushik Roy
    Yu Fu
    Cybersecurity, 6
  • [9] Machine learning based fileless malware traffic classification using image visualization
    Demmese, Fikirte Ayalke
    Neupane, Ajaya
    Khorsandroo, Sajad
    Wang, May
    Roy, Kaushik
    Fu, Yu
    CYBERSECURITY, 2023, 6 (01)
  • [10] PDF Malware Detection Using Visualization and Machine Learning
    Liu, Ching-Yuan
    Chiu, Min-Yi
    Huang, Qi-Xian
    Sun, Hung-Min
    DATA AND APPLICATIONS SECURITY AND PRIVACY XXXV, 2021, 12840 : 209 - 220