Ionic conduction of lithium and magnesium salts within laminar arrays in a smectic liquid-crystal polymer electrolyte

被引:54
|
作者
Dias, FB [1 ]
Batty, SV [1 ]
Ungar, G [1 ]
Voss, JP [1 ]
Wright, PV [1 ]
机构
[1] UNIV SHEFFIELD,CTR MOL MAT,DEPT MAT ENGN,SHEFFIELD S1 3JD,S YORKSHIRE,ENGLAND
关键词
D O I
10.1039/ft9969202599
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Three polymers having the structure shown below where R = -C16H33 or -C12H25 and n = 5 or 6 (coded C16O5, C16O6 and C12O6), have been synthesised and their complexes with LiClO4, LiBF4, LiCF3SO3 LiBr and Mg(ClO4)(2) have been prepared. [GRAPHICS] Using thermal analysis, polarised light microscopy, small-angle (SAXS) and wide-angle X-ray scattering techniques (WAXS) techniques and energy-minimised modelling it is shown that the complexes having greater than or equal to 0.5 mol salt per polymer repeating unit form smectic liquid-crystal structures above the side-chain melting temperatures [e.g. 43.5 degrees C for C16O5-LiClO4 (1:1)]. The salt is complexed to the two-dimensional helical polyether backbone layers which are separated by hydrocarbon layers. In contrast to expectation from conventional polymer electrolyte behaviour, the ionic conductivities of the lithium salt complexes in the liquid-crystal phases are greatest for systems having the most extensive two-dimensional organisation and follow the sequence C16O5 > C16O6 > C12O6. Mg(ClO4)(2) complexes with C16O5 and C16O6 are similarly organised in two dimensions. The results suggests that ionic mobility is most extensive within the plane of the polyether layers and there is no evidence for 'tunnelling' through the hydrocarbon material.
引用
收藏
页码:2599 / 2606
页数:8
相关论文
共 50 条
  • [1] Ionic conduction of lithium, sodium and magnesium salts within organised smectic liquid crystal polymer electrolytes
    Dias, FB
    Batty, SV
    Gupta, A
    Ungar, G
    Voss, JP
    Wright, PV
    ELECTROCHIMICA ACTA, 1998, 43 (10-11) : 1217 - 1224
  • [2] Lithium ion conduction in ionic liquid-based gel polymer electrolyte
    Egashira, Minato
    Todo, Hirotaka
    Yoshimoto, Nobuko
    Morita, Masayuki
    JOURNAL OF POWER SOURCES, 2008, 178 (02) : 729 - 735
  • [3] Ionic liquid mediated magnesium ion conduction in poly(ethylene oxide) based polymer electrolyte
    Kumar, Yogesh
    Hashmi, S. A.
    Pandey, G. P.
    ELECTROCHIMICA ACTA, 2011, 56 (11) : 3864 - 3873
  • [4] Liquid-crystal microlens arrays using patterned polymer networks
    Ren, HW
    Fan, YH
    Wu, ST
    OPTICS LETTERS, 2004, 29 (14) : 1608 - 1610
  • [5] Imidazole containing solid polymer electrolyte for lithium ion conduction and the effects of two lithium salts
    Zhang, Qian
    Liu, Kang
    Liu, Kun
    Zhou, Liang
    Ma, Chunjie
    Du, Yaping
    ELECTROCHIMICA ACTA, 2020, 351
  • [6] Anisotropic ionic conduction in a magnetically aligned liquid crystalline polymer electrolyte
    Hubbard, HVSA
    Sils, SA
    Davies, GR
    McIntyre, JE
    Ward, IM
    ELECTROCHIMICA ACTA, 1998, 43 (10-11) : 1239 - 1245
  • [7] Ionic conductivity studies in PMMA/PVdF polymer blend electrolyte with lithium salts
    Mahendran, O
    Rajendran, S
    IONICS, 2003, 9 (3-4) : 282 - 288
  • [8] Ionic conductivity studies in PMMA/PVdF polymer blend electrolyte with lithium salts
    O. Mahendran
    S. Rajendran
    Ionics, 2003, 9 : 282 - 288
  • [9] Ionic liquid crystal induced morphological control of solid composite polymer electrolyte for lithium-ion batteries
    Chen, Xixi
    Xie, Yu
    Ling, Yun
    Zhao, Jinsheng
    Xu, Yuzhong
    Tong, Yongfen
    Li, Shiqian
    Wang, Yan
    MATERIALS & DESIGN, 2020, 192
  • [10] Plasticized Ionic Liquid Crystal Elastomer Emulsion-Based Polymer Electrolyte for Lithium-Ion Batteries
    Siddiquee, Zakaria
    Lee, Hyunsang
    Xu, Weinan
    Kyu, Thein
    Jakli, Antal
    BATTERIES-BASEL, 2025, 11 (03):