Simulating the molecular density distribution during multi-phase fluid intrusion in heterogeneous media

被引:0
|
作者
Wang, Mingzhi [1 ,2 ,3 ]
Qi, Beimeng [4 ]
Liu, Yushi [1 ,2 ,3 ]
Al-Tabbaa, Abir [5 ]
Wang, Wei [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China
[2] Harbin Inst Technol, Key Lab Struct Dynam Behav & Control, Minist Educ, Harbin 150090, Peoples R China
[3] Harbin Inst Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disast, Minist Ind & Informat Technol, Harbin 150090, Peoples R China
[4] China Jiliang Univ, Coll Qual & Safety Engn, Hangzhou 310018, Peoples R China
[5] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词
Porous media; Multi-phase fluid; Surface tension; Molecular density distribution; Lattice Boltzmann method; LATTICE-BOLTZMANN METHOD; SURFACE-TENSION; WATER; DYNAMICS; MODELS; PERMEABILITY; FLOW; POROSIMETRY; TRANSPORT; VELOCITY;
D O I
10.1016/j.ces.2021.116693
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A computational recovery of multi-phase intrusion was discussed with the modified multi-relaxation time Lattice Boltzmann method (MRT-LBM). Originally proposed dual-matrix computation is developed to address the different phase separation and interface tracking for the multi-phase problem. A comprehensive validation is performed with the previously theorized observation of the mercury-water system. Results show that the dual-matrix computation is feasible to provide converged output under narrowed density difference down to 18%. The wetting and non-wetting behaviour resulted from form solid-fluid interaction is realized with arbitrary boundaries, in which the contact variance is up to 4.14%. The linear relations described by Laplace's law and Washburn's equation were three-dimensionally recovered with determination coefficients of 96.34% and 94.19%, respectively. A third fluid intrusion status of partial intrusion is captured in addition to complete-intrusion and non-occupation in porous boundary, demonstrating the advanced function of the phase-separation and interface tracking in problems with further increased heterogeneity. CO 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Simulating the molecular density distribution during multi-phase fluid intrusion in heterogeneous media
    Wang, Mingzhi
    Qi, Beimeng
    Liu, Yushi
    Al-Tabbaa, Abir
    Wang, Wei
    Wang, Mingzhi (mwang@hit.edu.cn), 1600, Elsevier Ltd (240):
  • [2] INTERNATIONAL SYMPOSIUM ON FLUID DYNAMICS OF HETEROGENEOUS MULTI-PHASE CONTINUOUS MEDIA
    不详
    ASTRONAUTICA ACTA, 1966, 12 (03): : 235 - &
  • [3] Homogenized lattice Boltzmann model for simulating multi-phase flows in heterogeneous porous media
    Lautenschlaeger, Martin P.
    Weinmiller, Julius
    Kellers, Benjamin
    Danner, Timo
    Latz, Arnulf
    ADVANCES IN WATER RESOURCES, 2022, 170
  • [4] A hybrid numerical scheme for multi-phase flow in heterogeneous porous media
    Wendland, E
    Flensberg, D
    COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2, PROCEEDINGS, 2002, 47 : 297 - 304
  • [5] Phase transitions in multi-phase media
    Mikhailov A.S.
    Mikhailov V.S.
    Journal of Mathematical Sciences, 2000, 102 (5) : 4436 - 4472
  • [6] STRESSES IN MULTI-PHASE MEDIA
    EIMER, C
    ARCHIWUM MECHANIKI STOSOWANEJ, 1967, 19 (04): : 521 - &
  • [7] VISCOELASTICITY OF MULTI-PHASE MEDIA
    EIMER, C
    ARCHIVES OF MECHANICS, 1971, 23 (01): : 3 - &
  • [8] On the Performance of the Node Control Volume Finite Element Method for Modeling Multi-phase Fluid Flow in Heterogeneous Porous Media
    Abd, Abdul Salam
    Abushaikha, Ahmad S.
    TRANSPORT IN POROUS MEDIA, 2020, 135 (02) : 409 - 429
  • [9] On the Performance of the Node Control Volume Finite Element Method for Modeling Multi-phase Fluid Flow in Heterogeneous Porous Media
    Abdul Salam Abd
    Ahmad S. Abushaikha
    Transport in Porous Media, 2020, 135 : 409 - 429
  • [10] Multi-phase Turbulence Density Power Spectra in the Perseus Molecular Cloud
    Pingel, N. M.
    Lee, Min-Young
    Burkhart, Blakesley
    Stanimirovic, Snezana
    ASTROPHYSICAL JOURNAL, 2018, 856 (02):