The representation of residue classes by products of small integers

被引:10
|
作者
Garaev, M. Z.
Karatsuba, A. A.
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[2] Russian Acad Sci, Steklov Inst Math, GSP 1, Moscow, Russia
关键词
congruences; trigonometric sums; number of solutions; asymptotic formulae;
D O I
10.1017/S0013091505000969
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a large integer m, we obtain asymptotic formulae for the number of solutions of certain congruences modulo m, with several variables, where the variables belong to special sets of residue classes modulo m. In particular, we obtain new information on the exceptional set of the multiplication table problem in the residue ring modulo m.
引用
收藏
页码:363 / 375
页数:13
相关论文
共 50 条
  • [1] Products of Small Integers in Residue Classes and Additive Properties of Fermat Quotients
    Harman, Glyn
    Shparlinski, Igor E.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (05) : 1424 - 1446
  • [2] Multiplicative character sums and products of sparse integers in residue classes
    Ostafe, Alina
    Shparlinski, Igor E.
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2012, 64 (02) : 247 - 255
  • [3] Multiplicative character sums and products of sparse integers in residue classes
    Alina Ostafe
    Igor E. Shparlinski
    [J]. Periodica Mathematica Hungarica, 2012, 64 : 247 - 255
  • [4] CONVOLUTIONS OVER RESIDUE CLASSES OF QUADRATIC INTEGERS
    REED, IS
    TRUONG, TK
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (04) : 468 - 475
  • [5] The Cubic Mapping Graph of the Residue Classes of Integers
    Wei, Yangjiang
    Nan, Jizhu
    Tang, Gaohua
    Su, Huadong
    [J]. ARS COMBINATORIA, 2010, 97 : 101 - 110
  • [6] PRODUCTS IN RESIDUE CLASSES
    Friedlander, John B.
    Kurlberg, Par
    Shparlinski, Igor E.
    [J]. MATHEMATICAL RESEARCH LETTERS, 2008, 15 (5-6) : 1133 - 1147
  • [7] On the Distribution in Residue Classes of Integers with a Fixed Sum of Digits
    Christian Mauduit
    Carl Pomerance
    András Sárközy
    [J]. The Ramanujan Journal, 2005, 9 : 45 - 62
  • [8] UNIFORM-DISTRIBUTION OF SEQUENCES OF INTEGERS IN RESIDUE CLASSES
    NARKIEWICZ, W
    [J]. LECTURE NOTES IN MATHEMATICS, 1984, 1087 : 1 - 121
  • [9] On the distribution in residue classes of integers with a fixed sum of digits
    Mauduit, C
    Pomerance, C
    Sárközy, A
    [J]. RAMANUJAN JOURNAL, 2005, 9 (1-2): : 45 - 62
  • [10] DISTRIBUTION OF (K,R)-FREE INTEGERS IN RESIDUE CLASSES
    HARDY, GE
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A53 - A53