Towards the C0 flux conjecture

被引:6
|
作者
Buhovsky, Lev [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2014年 / 14卷 / 06期
关键词
ARNOLD CONJECTURE; LAGRANGIAN INTERSECTIONS; SYMPLECTIC-MANIFOLDS; HOLOMORPHIC-CURVES; FLOER HOMOLOGY; DIFFEOMORPHISMS;
D O I
10.2140/agt.2014.14.3493
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we generalise a result of Lalonde, McDuff and Polterovich concerning the C (0) flux conjecture, thus confirming the conjecture in new cases of symplectic manifolds. We also prove the continuity of the flux homomorphism on the space of smooth symplectic isotopies endowed with the C (0) topology, which implies the C (0) rigidity of Hamiltonian paths, conjectured by Seyfaddini.
引用
收藏
页码:3493 / 3508
页数:16
相关论文
共 50 条
  • [1] The C0 estimate for the quaternionic Calabi conjecture
    Sroka, Marcin
    ADVANCES IN MATHEMATICS, 2020, 370
  • [2] On the Matrix Classes (c0, c0) and (c0, c0; P) over Complete Ultrametric Fields
    Natarajan, P. N.
    FILOMAT, 2021, 35 (15) : 5263 - 5270
  • [3] Hadronic molecules ηcηc and χc0χc0
    Agaev, S. S.
    Azizi, K.
    Barsbay, B.
    Sundu, H.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (10):
  • [4] Mass spectra and Regge trajectories of Λc+, Σc0, Ξc0 and Ωc0 baryons
    Shah, Zalak
    Thakkar, Kaushal
    Rai, Ajay Kumar
    Vinodkumar, P. C.
    CHINESE PHYSICS C, 2016, 40 (12)
  • [5] THE SPECTRUM OF THE CESARO OPERATOR ON C0(C0)
    OKUTOYI, J
    THORPE, B
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1989, 105 : 123 - 129
  • [6] A STUDY OF THE MATRIX CLASSES (c0, c) AND (c0, c; P)
    Natarajan, Pinnangudi Narayanasubramanian
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (05): : 961 - 968
  • [7] The coarse Baum-Connes conjecture via C0 coarse geometry
    Wright, N
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 220 (02) : 265 - 303
  • [8] The Banach spaces l∞(c0) and c0(l∞) are not isomorphic
    Cembranos, Pilar
    Mendoza, Jose
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (02) : 461 - 463
  • [9] Measurements of the branching fractions of Ξc0 → ΛKS0, Ξc0 → Σ0KS0, and Ξc0 → Σ+K- decays at Belle
    Li, Y.
    Cui, J. X.
    Jia, S.
    Shen, C. P.
    Adachi, I.
    Ahn, J. K.
    Aihara, H.
    Al Said, S.
    Asner, D. M.
    Atmacan, H.
    Aushev, T.
    Ayad, R.
    Babu, V.
    Bahinipati, S.
    Behera, P.
    Belous, K.
    Bennett, J.
    Bessner, M.
    Bhardwaj, V.
    Bhuyan, B.
    Bilka, T.
    Bobrov, A.
    Bodrov, D.
    Bonvicini, G.
    Borah, J.
    Bozek, A.
    Bracko, M.
    Branchini, P.
    Browder, T. E.
    Budano, A.
    Campajola, M.
    Cervenkov, D.
    Chang, M. -C.
    Chang, P.
    Chen, A.
    Cheon, B. G.
    Chilikin, K.
    Cho, H. E.
    Cho, K.
    Cho, S. -J.
    Choi, S. -K.
    Choi, Y.
    Choudhury, S.
    Cinabro, D.
    Cunliffe, S.
    Das, S.
    De Nardo, G.
    De Pietro, G.
    Dhamija, R.
    Di Capua, F.
    PHYSICAL REVIEW D, 2022, 105 (01)
  • [10] Search for X(3872) → π0χc0 and X(3872) → ππχc0 at BESIII
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Albrecht, M.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, X. H.
    Bai, Y.
    Bakina, O.
    Ferroli, R. Baldini
    Balossino, I
    Ban, Y.
    Batozskaya, V
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bloms, J.
    Bortone, A.
    Boyko, I
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Z. J.
    Cheng, W. S.
    Chu, X.
    Cibinetto, G.
    PHYSICAL REVIEW D, 2022, 105 (07)