ENABLING SAR DATA EXPLOITATION BY PROCESSING ON-DEMAND

被引:0
|
作者
Cuccu, R. [1 ,2 ]
Sabatino, G. [1 ,2 ]
Delgado, J. M. [1 ,2 ]
Rivolta, G. [1 ,2 ]
机构
[1] Progress Syst Srl, Parco Sci Tor Vergata, I-00133 Rome, Italy
[2] ESA Res & Serv Support, I-00044 Frascati, Italy
关键词
RSS; SAR; Processing; Grid; Cloud;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Since many years the ESA Research and Service Support (RSS) service provides resources to support Earth Observation (EO) data exploitation. Significant value has been delivered in these years to EO researchers in terms of cost, time and resource saving, thus enabling enhanced scientific productivity. In the new Sentinel era, recently started with the launch of Sentinel-1 in April 2014, data volume and processing requirements will be more challenging than before. The EO scientific community accessing and using RSS resources will therefore experience even greater benefits in terms of cost, time and resources savings, for activities related to data procurement, handling, storage, access, and processing.
引用
收藏
页码:1476 / 1479
页数:4
相关论文
共 50 条
  • [1] Enabling On-Demand Mashups of Open Data with Semantic Services
    Feng, Yuzhang
    Veeramani, Anitha
    Kanagasabai, Rajaraman
    [J]. PROCEEDINGS OF THE 2012 IEEE 18TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS 2012), 2012, : 755 - 759
  • [2] SAR data exploitation: Computational technology enabling SAR ATR algorithm development
    Majumder, Uttam K.
    Casteel, Curtis H.
    Buxa, Peter
    Minardi, Michael J.
    Zelnio, Edmund G.
    Nehrbass, John W.
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XIV, 2007, 6568
  • [3] Geelytics: Enabling On-demand Edge Analytics Over Scoped Data Sources
    Cheng, Bin
    Papageorgiou, Apostolos
    Bauer, Martin
    [J]. 2016 IEEE INTERNATIONAL CONGRESS ON BIG DATA - BIGDATA CONGRESS 2016, 2016, : 101 - 108
  • [4] On-Demand Processing for Remote Sensing Big Data Analysis
    Huang, Zhenchun
    Zhong, Anrun
    Li, Guoqing
    [J]. 2017 15TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS AND 2017 16TH IEEE INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING AND COMMUNICATIONS (ISPA/IUCC 2017), 2017, : 1241 - 1245
  • [5] Stela: Enabling Stream Processing Systems to Scale-in and Scale-out On-demand
    Xu, Le
    Peng, Boyang
    Gupta, Indranil
    [J]. PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON CLOUD ENGINEERING (IC2E), 2016, : 22 - 31
  • [6] TubeDB: An on-demand processing database system for climate station data
    Woellauer, Stephan
    Zeuss, Dirk
    Haensel, Falk
    Nauss, Thomas
    [J]. COMPUTERS & GEOSCIENCES, 2021, 146
  • [7] Privacy Aware on-Demand Resource Provisioning for IoT Data Processing
    Kirkham, Tom
    Sinha, Arnab
    Parlavantzas, Nikos
    Kryza, Bartosz
    Fremantle, Paul
    Kritikos, Kyriakos
    Aziz, Benjamin
    [J]. INTERNET OF THINGS: IOT INFRASTRUCTURES, IOT 360, PT II, 2016, 170 : 87 - 95
  • [8] Accelerating Remote Sensing Data Analysis Workflows by On-demand Processing
    Huang, Zhen-chun
    Tian, Zhuo-jing
    [J]. 2018 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELING, SIMULATION AND APPLIED MATHEMATICS (CMSAM 2018), 2018, 310 : 146 - 151
  • [9] Enabling On-Demand Science via Cloud Computing
    Keahey, Kate
    Parashar, Manish
    [J]. IEEE CLOUD COMPUTING, 2014, 1 (01): : 21 - 27
  • [10] RTID: On-demand real-time data processing for IoT network
    Rahman, Muhammad Saifur
    Das, Rohit Kumar
    [J]. MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 4721 - 4725