Generation of single entangled photon-phonon pairs via an atom-photon-phonon interaction

被引:12
|
作者
Xu, Xun-Wei [1 ]
Shi, Hai-Quan [1 ,2 ]
Liao, Jie-Qiao [3 ,4 ]
Chen, Ai-Xi [1 ,5 ]
机构
[1] East China Jiaotong Univ, Dept Appl Phys, Nanchang 330013, Jiangxi, Peoples R China
[2] Nanchang Univ, Sch Mat Sci & Engn, Nanchang 330031, Jiangxi, Peoples R China
[3] Hunan Normal Univ, Minist Educ, Dept Phys, Key Lab Low Dimens Quantum Struct & Quantum Contr, Changsha 410081, Hunan, Peoples R China
[4] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Hunan, Peoples R China
[5] Zhejiang Sci Tech Univ, Dept Phys, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROMAGNETICALLY INDUCED TRANSPARENCY; CAVITY; BLOCKADE; LIGHT;
D O I
10.1103/PhysRevA.100.053802
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Antibunching and entanglement play important roles in quantum information processing as antibunching is an essential ingredient for the production of single photons (phonons) and entanglement is a crucial resource for quantum communication and metrology. In this paper, we propose a atom-photon-phonon (tripartite) interaction in a hybrid cavity-atom-mechanics system, and show that both photon and phonon antibunching can be observed simultaneously under the resonant atomic driving. More importantly, the generated single photons and phonons are strongly correlated and entangled with each other, i.e., single entangled photon-phonon pairs are generated via the atom-photon-phonon interaction. The generation of single entangled photon-phonon pairs is the first step to implement entanglement-based quantum state transfer, which is essential for connecting mechanical and optical systems to build hybrid quantum networks.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Unconventional phonon blockade via atom-photon-phonon interaction in hybrid optomechanical systems
    Wang, Mei
    Yin, Tai-Shuang
    Sun, Zhao-Yu
    Cheng, Hong-Guang
    Zhan, Bi-Fu
    Zheng, Li-Li
    [J]. OPTICS EXPRESS, 2022, 30 (07): : 10251 - 10268
  • [2] PHOTON-PHONON INTERACTION IN NEAR INFRARED
    RUPPRECHT, G
    [J]. PHYSICAL REVIEW LETTERS, 1964, 12 (21) : 580 - &
  • [3] Photon-phonon interaction in photonic crystals
    Ueta, T.
    [J]. 9TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS AND 4TH ASIAN PACIFIC CONGRESS ON COMPUTATIONAL MECHANICS, 2010, 10
  • [4] PHOTON-PHONON INTERACTION IN THIN FILMS
    BALKANAS.M
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1968, 115 (03) : C60 - &
  • [5] Photon-phonon interaction on periodic structures
    V. A. Golenishchev-Kutuzov
    A. V. Golenishchev-Kutuzov
    R. I. Kalimullin
    A. A. Potapov
    [J]. Bulletin of the Russian Academy of Sciences: Physics, 2012, 76 (7) : 731 - 732
  • [6] PHOTON-PHONON SUPERRADIANCE
    ANDRIANOV, SN
    SAMARTSEV, VV
    SHEIBUT, YE
    [J]. OPTIKA I SPEKTROSKOPIYA, 1995, 79 (03): : 363 - 369
  • [7] Photon-phonon superradiation
    Andrianov, S.N.
    Samartsev, V.V.
    Sheibut, Yu.E.
    [J]. Optics and Spectroscopy (English translation of Optika i Spektroskopiya), 1995, 79 (03):
  • [8] Hybrid photon-phonon blockade
    Abo, Shilan
    Chimczak, Grzegorz
    Kowalewska-Kudlaszyk, Anna
    Perina, Jan, Jr.
    Chhajlany, Ravindra
    Miranowicz, Adam
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [9] Dissipatively Controlled Optomechanical Interaction via Cascaded Photon-Phonon Coupling
    Shen, Zhen
    Zhang, Yan-Lei
    Zou, Chang-Ling
    Guo, Guang-Can
    Dong, Chun-Hua
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (16)
  • [10] COHERENT PHOTON-PHONON INTERACTIONS
    GARDNER, JW
    [J]. ELECTRONICS LETTERS, 1968, 4 (18) : 379 - &