Nonorientable Lagrangian surfaces in rational 4-manifolds

被引:1
|
作者
Dai, Bo [1 ]
Ho, Chung-I [2 ]
Li, Tian-Jun [3 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[2] Natl Kaohsiung Normal Univ, Dept Math, Kaohsiung, Taiwan
[3] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2019年 / 19卷 / 06期
关键词
Lagrangian blowup; Nonorientable Lagrangian surface;
D O I
10.2140/agt.2019.19.2837
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for any nonzero class A in H-2(X; Z(2)) in a rational 4-manifold X, A is represented by a nonorientable embedded Lagrangian surface L (for some symplectic structure) if and only if P(A) chi(L) (mod 4), where P(A) denotes the mod 4 valued Pontryagin square of A.
引用
收藏
页码:2837 / 2854
页数:18
相关论文
共 50 条