Density of Polynomial Maps

被引:6
|
作者
Chuang, Chen-Lian [1 ]
Lee, Tsiu-Kwen [1 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
关键词
density; polynomial; endomorphism ring; PI; PRIME-RINGS;
D O I
10.4153/CMB-2010-041-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a dense subring of End(V-D), where V is a left vector space over a division ring D. If dim V-D = infinity, then the range of any nonzero polynomial f(X-1, ..., X-m) on R is dense in End(V-D). As an application, let R be a prime ring without nonzero nil one-sided ideals and 0 not equal a is an element of R. If a f(x(1), ..., x(m))(n(xi)) = 0 for all x(1), ..., x(m) is an element of R, where n(x(i)) is a positive integer depending on x(1), ..., x(m) then f(X-1, ..., X-m) is a polynomial identity of R unless R is a finite matrix ring over a finite field.
引用
收藏
页码:223 / 229
页数:7
相关论文
共 50 条
  • [1] OPTIMAL DENSITY FOR VALUES OF GENERIC POLYNOMIAL MAPS
    Ghosh, Anish
    Gorodnik, Alexander
    Nevo, Amos
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2020, 142 (06) : 1945 - 1979
  • [2] Polynomial maps and polynomial sequences in groups
    Hu, Ya-Qing
    [J]. JOURNAL OF GROUP THEORY, 2024, 27 (04) : 739 - 787
  • [3] Chaotic Polynomial Maps
    Zhang, Xu
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (08):
  • [4] Polynomial maps of modules
    Xantcha, Qimh Richey
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (09) : 4109 - 4122
  • [5] POLYNOMIAL MAPS ON GROUPS
    PASSI, IBS
    [J]. JOURNAL OF ALGEBRA, 1968, 9 (02) : 121 - &
  • [6] HOMOGENEOUS POLYNOMIAL MAPS
    RUDIN, W
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1984, 87 (01): : 55 - 61
  • [7] NONCOMMUTATIVE POLYNOMIAL MAPS
    Leroy, Andre
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (04)
  • [8] A Tutte Polynomial for Maps
    Goodall, Andrew
    Krajewski, Thomas
    Regts, Guus
    Vena, Lluis
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (06): : 913 - 945
  • [9] A NOTE ON POLYNOMIAL MAPS
    KARAN, R
    VERMANI, LR
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1988, 51 (1-2) : 169 - 173
  • [10] Polynomial texture maps
    Malzbender, T
    Gelb, D
    Wolters, H
    [J]. SIGGRAPH 2001 CONFERENCE PROCEEDINGS, 2001, : 519 - 528