Formulation of contact between two continuous bodies with adhesion in finite deformations

被引:1
|
作者
Bretelle, AS
Cocu, M
Monerie, Y
机构
[1] CNRS, Lab Mecan & Acoust, F-13402 Marseille 20, France
[2] CNRS, LMA, Marseille, France
[3] Univ Aix Marseille 1, F-13331 Marseille, France
关键词
unilateral contact; friction; adhesion; finite deformations;
D O I
10.1016/S1287-4620(00)00124-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Within the framework of finite deformations and using an approach to the kinematics of contact due to A. Curnier; Q.C. He and J.J. Telega, we propose a spatial thermodynamic formulation for the problem coupling unilateral condition friction and adhesion. The adhesion is characterized by its intensity introduced by M. Fremond. In the case of frictionless contact between an hyperelastic body and a plane rigid support, with a particular 'static' law for the evolution of the intensity of adhesion, the problem can be reduced to a minimization one for which we can show the existence of a solution. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:203 / 208
页数:6
相关论文
共 50 条
  • [1] FORMULATION OF UNILATERAL CONTACT BETWEEN 2 ELASTIC BODIES UNDERGOING FINITE DEFORMATIONS
    CURNIER, A
    HE, QC
    TELEGA, JJ
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1992, 314 (01): : 1 - 6
  • [2] An adhesion and friction model for the contact between two deformable bodies
    Raous, M
    Cangemi, L
    Cocu, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1997, 325 (09): : 503 - 509
  • [3] Unilateral contact with adhesion and friction between two hyperelastic bodies
    Bretelle, AS
    Cocou, M
    Monerie, Y
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2001, 39 (18) : 2015 - 2032
  • [4] Adhesion at the wavy contact interface between two elastic bodies
    Adams, GG
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2004, 71 (06): : 851 - 856
  • [5] A bi-potential contact formulation of orthotropic adhesion between soft bodies
    L. B. Hu
    Y. Cong
    C. Renaud
    Z.-Q. Feng
    [J]. Computational Mechanics, 2022, 69 : 931 - 945
  • [6] A bi-potential contact formulation of orthotropic adhesion between soft bodies
    Hu, L. B.
    Cong, Y.
    Renaud, C.
    Feng, Z-Q
    [J]. COMPUTATIONAL MECHANICS, 2022, 69 (04) : 931 - 945
  • [7] A bilateral contact problem with adhesion and damage between two viscoelastic bodies
    Derbazi, Ammar
    Boukrioua, Souida
    Dalah, Mohamed
    Aissaoui, Adel
    Boudjedour, Allaoua
    Megrous, Amar
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 1216 - 1229
  • [8] Analysis and approximation of frictionless contact problems between two piezoelectric bodies with adhesion
    Ammar, Tedjani Hadj
    Drabla, Salah
    Benabderrahmane, Benyattou
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (04) : 431 - 445
  • [9] The deformations of contact of elastic bodies
    Lafay, A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1900, 131 : 525 - 528
  • [10] BOUNDARY VARIATIONAL FORMULATION OF A FRICTIONLESS CONTACT PROBLEM FOR COMPOSITE FINITE BODIES
    SIPCIC, SR
    RABINOVICH, VL
    RUGG, RA
    [J]. AIAA JOURNAL, 1994, 32 (02) : 365 - 370