Azure SQL Database Always Encrypted

被引:37
|
作者
Antonopoulos, Panagiotis [1 ]
Arasu, Arvind
Singh, Kunal D.
Eguro, Ken
Gupta, Nitish
Jain, Rajat
Kaushik, Raghav
Kodavalla, Hanuma
Kossmann, Donald
Ogg, Nikolas
Ramamurthy, Ravi
Szymaszek, Jakub
Trimmer, Jeffrey
Vaswani, Kapil
Venkatesan, Ramarathnam
Zwilling, Mike
机构
[1] Microsoft Azure, Redmond, WA 98052 USA
关键词
D O I
10.1145/3318464.3386141
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents Always Encrypted, a recently released feature of Microsoft SQL Server that uses column granularity encryption to provide cryptographic data protection guarantees. Always Encrypted can be used to outsource database administration while keeping the data confidential from an administrator, including cloud operators. The first version of Always Encrypted was released in Azure SQL Database and as part of SQL Server 2016, and supported equality operations over deterministically encrypted columns. The second version, released as part of SQL Server 2019, uses an enclave running within a trusted execution environment to provide richer functionality that includes comparison and string pattern matching for an IND-CPA-secure (randomized) encryption scheme. We present the security, functionality, and design of Always Encrypted, and provide a performance evaluation using the TPC-C benchmark.
引用
收藏
页码:1511 / 1525
页数:15
相关论文
共 50 条
  • [1] Microsoft Azure SQL Database Telemetry
    Lang, Willis
    Bertsch, Frank
    DeWitt, David J.
    Ellis, Nigel
    [J]. ACM SOCC'15: PROCEEDINGS OF THE SIXTH ACM SYMPOSIUM ON CLOUD COMPUTING, 2015, : 189 - 194
  • [2] SQL Ledger: Cryptographically Verifiable Data in Azure SQL Database
    Antonopoulos, Panagiotis
    Kaushik, Raghav
    Kodavalla, Hanuma
    Aceves, Sergio Rosales
    Wong, Reilly
    Anderson, Jason
    Szymaszek, Jakub
    [J]. SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 2437 - 2449
  • [3] Automatic Database Troubleshooting of Azure SQL Databases
    Dundjerski, Dejan
    Tomasevic, Milo
    [J]. IEEE TRANSACTIONS ON CLOUD COMPUTING, 2022, 10 (03) : 1604 - 1619
  • [4] Constant Time Recovery in Azure SQL Database
    Antonopoulos, Panagiotis
    Byrne, Peter
    Chen, Wayne
    Diaconu, Cristian
    Kodandaramaih, Raghavendra Thallam
    Kodavalla, Hanuma
    Purnananda, Prashanth
    Radu, Adrian-Leonard
    Ravella, Chaitanya Sreenivas
    Venkataramanappa, Girish Mittur
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 12 (12): : 2143 - 2154
  • [5] Technical Perspective SQL on an Encrypted Database
    Suciu, Dan
    [J]. COMMUNICATIONS OF THE ACM, 2012, 55 (09) : 102 - 102
  • [6] Improving Schema Issue Advisor in the Azure SQL Database
    Dundjerski, Dejan
    Lazic, Stefan
    Tomasevic, Milo
    Bojic, Dragan
    [J]. 2017 25TH TELECOMMUNICATION FORUM (TELFOR), 2017, : 733 - 736
  • [7] Self-Managing Database Capabilities in SQL Azure
    Kodavalla, Hanuma
    [J]. 2023 IEEE 39TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS, ICDEW, 2023, : 92 - 92
  • [8] Support of temporal data on the MS SQL Server and Azure SQL Database platform
    Lachecinski, Sebastian
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2020, 96 (12): : 95 - 101
  • [9] Automatically Indexing Millions of Databases in Microsoft Azure SQL Database
    Das, Sudipto
    Grbic, Miroslav
    Ilic, Igor
    Jovandic, Isidora
    Jovanovic, Andrija
    Narasayya, Vivek R.
    Radulovic, Miodrag
    Stikic, Maja
    Xu, Gaoxiang
    Chaudhuri, Surajit
    [J]. SIGMOD '19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2019, : 666 - 679
  • [10] Predictive Provisioning: Efficiently Anticipating Usage in Azure SQL Database
    Viswanathan, Lalitha
    Chandra, Bikash
    Lang, Willis
    Ramachandra, Karthik
    Patel, Jignesh M.
    Kalhan, Ajay
    DeWitt, David J.
    Halverson, Alan
    [J]. 2017 IEEE 33RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2017), 2017, : 1111 - 1116