Dynamical diffeomorphisms

被引:5
|
作者
Ferrero, Renata [1 ]
Percacci, Roberto [2 ,3 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys THEP, Staudingerweg 7, D-55128 Mainz, Germany
[2] Scuola Int Super Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
[3] INFN, Sez Trieste, Trieste, Italy
关键词
diffeomorphism invariance; nonlinear sigma model; massive gravity; effective cosmological constant; quantum gravity; dynamical coordinates; relational observables; COMPLETE OBSERVABLES; FIELD-THEORY; QUANTUM; SPACE;
D O I
10.1088/1361-6382/abf627
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct a general effective dynamics for diffeomorphisms of spacetime, in a fixed external metric. Though related to familiar models of scalar fields as coordinates, our models have subtly different properties, both at kinematical and dynamical level. The energy-momentum (EM) tensor consists of two independently conserved parts. The background solution is the identity diffeomorphism and the EM tensor of this solution gives rise to an effective cosmological constant.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Pseudocircles, diffeomorphisms and perturbable dynamical systems
    Kennedy, JA
    Yorke, JA
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 : 1031 - 1057
  • [2] Dynamical determinants and spectrum for hyperbolic diffeomorphisms
    Baladi, Viviane
    Tsujii, Masato
    GEOMETRIC AND PROBABILISTIC STRUCTURES IN DYNAMICS, 2008, 469 : 29 - +
  • [3] Perturbation Analysis of Diffeomorphisms in Contact Dynamical System
    Sun, Dawei
    OPTICAL, ELECTRONIC MATERIALS AND APPLICATIONS II, 2012, 529 : 264 - 267
  • [5] Estimates and Control of Diffeomorphisms In Contact Dynamical System
    Sun, Dawei
    OPTICAL, ELECTRONIC MATERIALS AND APPLICATIONS II, 2012, 529 : 236 - 239
  • [6] Dynamical incoherence for a large class of partially hyperbolic diffeomorphisms
    Barthelme, Thomas
    Fenley, Sergio R.
    Frankel, Steven
    Potrie, Rafael
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (11) : 3227 - 3243
  • [7] On the dynamical coherence of structurally stable 3-diffeomorphisms
    Vyacheslav Z. Grines
    Yulia A. Levchenko
    Vladislav S. Medvedev
    Olga V. Pochinka
    Regular and Chaotic Dynamics, 2014, 19 : 506 - 512
  • [8] A dynamical Lefschetz trace formula for Algebraic anosov diffeomorphisms
    Deitmar, A
    Deninger, C
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2003, 73 (1): : 81 - 98
  • [9] On the dynamical coherence of structurally stable 3-diffeomorphisms
    Grines, Vyacheslav Z.
    Levchenko, Yulia A.
    Medvedev, Vladislav S.
    Pochinka, Olga V.
    REGULAR & CHAOTIC DYNAMICS, 2014, 19 (04): : 506 - 512
  • [10] A dynamical lefschetz trace formula for algebraic anosov diffeomorphisms
    Anton Deitmar
    Christopher Deninger
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2003, 73 : 81 - 98