Non-closed isometry-invariant geodesics

被引:1
|
作者
Bangert, Victor [1 ]
机构
[1] Univ Freiburg, Math Inst, Abt Reine Math, Eckerstr 1, D-79104 Freiburg, Germany
关键词
Isometry-invariant geodesics; Morse-Bott theory; Actions of non-compact; abelian Lie groups; EXISTENCE;
D O I
10.1007/s00013-016-0904-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let c be a non-closed and bounded geodesic in a complete Riemannian manifold M. Assume that c is invariant under an isometry A of M and that c is not contained in the set of fixed points of A. We prove that, for some , the geodesic flow line A < corresponding to c is dense in a k-dimensional torus N embedded in TM. In particular, every geodesic with initial vector in N is A-invariant.
引用
收藏
页码:573 / 580
页数:8
相关论文
共 50 条