Semi-Supervised Segmentation of Multi-vendor and Multi-center Cardiac MRI

被引:12
|
作者
Bolhassani, Mahyar [1 ]
Oksuz, Ilkay [2 ]
机构
[1] Istanbul Tech Univ, Biomed Engn Dept, Istanbul, Turkey
[2] Istanbul Tech Univ, Comp Engn Dept, Istanbul, Turkey
关键词
Cardiac MRI Segmentation; Convolutional Neural Network; Residual U-Net; semi-supervised learning; Histogram matching; domain adaptation;
D O I
10.1109/SIU53274.2021.9477818
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic segmentation of the heart cavity is an essential task for the diagnosis of cardiac diseases. In this paper, we propose a semi-supervised segmentation setup for leveraging unlabeled data to segment Left-ventricle, Right-ventricle, and Myocardium. We utilize an enhanced version of residual U-Net architecture on a large-scale cardiac MRI dataset. Handling the class imbalanced data issue using dice loss, the enhanced supervised model is able to achieve better dice scores in comparison with a vanilla U-Net model. We applied several augmentation techniques including histogram matching to increase the performance of our model in other domains. Also, we introduce a simple but efficient semi-supervised segmentation method to improve segmentation results without the need for large labeled data. Finally, we applied our method on two benchmark datasets, STACOM2018, and M&Ms 2020 challenges, to show the potency of the proposed model. The effectiveness of our proposed model is demonstrated by the quantitative results. The model achieves average dice scores of 0.921, 0.926, and 0.891 for Left-ventricle, Right-ventricle, and Myocardium respectively.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Implementable Deep Learning for Multi-sequence Proton MRI Lung Segmentation: A Multi-center, Multi-vendor, and Multi-disease Study
    Astley, Joshua R.
    Biancardi, Alberto M.
    Hughes, Paul J. C.
    Marshall, Helen
    Collier, Guilhem J.
    Chan, Ho-Fung
    Saunders, Laura C.
    Smith, Laurie J.
    Brook, Martin L.
    Thompson, Roger
    Rowland-Jones, Sarah
    Skeoch, Sarah
    Bianchi, Stephen M.
    Hatton, Matthew Q.
    Rahman, Najib M.
    Ho, Ling-Pei
    Brightling, Chris E.
    Wain, Louise V.
    Singapuri, Amisha
    Evans, Rachael A.
    Moss, Alastair J.
    McCann, Gerry P.
    Neubauer, Stefan
    Raman, Betty
    Wild, Jim M.
    Tahir, Bilal A.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 58 (04) : 1030 - 1044
  • [2] Editorial for "Implementable Deep Learning for Multi-Sequence Proton MRI Lung Segmentation: A Multi-Center, Multi-Vendor and Multi-Disease Study"
    Hadj Bouzid, Amel Imene
    Dournes, Gael
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 58 (04) : 1045 - 1046
  • [3] Reliability of multi-parameter mapping (MPM) in the cervical cord: A multi-center multi-vendor quantitative MRI study
    Seif, Maryam
    Leutritz, Tobias
    Schading, Simon
    Emmengger, Tim
    Curt, Armin
    Weiskopf, Nikolaus
    Freund, Patrick
    NEUROIMAGE, 2022, 264
  • [4] Lutetium-177 SPECT Quantification: A Multi-Center, Multi-Vendor Comparison
    Viol, S. Meyer
    Peters, S. M. B.
    van der Werf, N. R.
    van Velden, F. H. P.
    de Jong, N.
    Konijnenberg, M.
    Meeuwis, A.
    Gotthardt, M.
    Beijst, C.
    de Jong, H. W. A. M.
    Segbers, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S220 - S221
  • [5] Accuracy of absolute quantitative SPECT/CT in a multi-vendor and multi-center setting
    Peters, Steffie
    Van der Werf, Niels
    Segbers, Marcel
    Van Velden, Floris
    Wierts, Roel
    Woudstra, Evert-Jan
    Blokland, Koos J.
    Konijnenberg, Mark
    Lazarenko, Sergiy
    Visser, Eric
    Gotthardt, Martin
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [6] Semi-supervised model based on implicit neural representation and mutual learning (SIMN) for multi-center nasopharyngeal carcinoma segmentation on MRI
    Han X.
    Chen Z.
    Lin G.
    Lv W.
    Zheng C.
    Lu W.
    Sun Y.
    Lu L.
    Computers in Biology and Medicine, 2024, 175
  • [7] Multimodality and Multi-Vendor Comparisons of Strain Evaluation by Cardiac Mri
    Cao, Jie J.
    Ngai, Nora
    Duncanson, Lynette
    Cheng, Joshua
    Gliganic, Kathleen
    Chen, Qizhi
    CIRCULATION, 2017, 136
  • [8] Multi-Center, Multi-Vendor Reproducibility and Calibration of MRI-Based R2*for Liver Iron Quantification
    Hernando, Diego
    Zhao, Ruiyang
    Yuan, Qing
    Ghasabeh, Mounes Aliyari
    Ruschke, Stefan
    Miao, Xinran
    Karampinos, Dimitrios C.
    Mao, Lu
    Harris, David T.
    Kamel, Ryan R.
    Vasanawala, Shreyas
    Yokoo, Takeshi
    Reeder, Scott B.
    BLOOD, 2021, 138
  • [9] Towards standardization of absolute SPECT/CT quantification: a multi-center and multi-vendor phantom study
    Peters, Steffie M. B.
    van der Werf, Niels R.
    Segbers, Marcel
    van Velden, Floris H. P.
    Wierts, Roel
    Blokland, Koos J. A. K.
    Konijnenberg, Mark W.
    Lazarenko, Sergiy, V
    Visser, Eric P.
    Gotthardt, Martin
    EJNMMI PHYSICS, 2019, 6 (01)
  • [10] Towards standardization of absolute SPECT/CT quantification: a multi-center and multi-vendor phantom study
    Steffie M. B. Peters
    Niels R. van der Werf
    Marcel Segbers
    Floris H. P. van Velden
    Roel Wierts
    Koos (J.) A. K. Blokland
    Mark W. Konijnenberg
    Sergiy V. Lazarenko
    Eric P. Visser
    Martin Gotthardt
    EJNMMI Physics, 6