Canonical symplectic structure and structure-preserving geometric algorithms for Schrodinger-Maxwell systems

被引:14
|
作者
Chen, Qiang [1 ,2 ,3 ]
Qin, Hong [1 ,2 ,4 ]
Liu, Jian [1 ,2 ]
Xiao, Jianyuan [1 ,2 ]
Zhang, Ruili [1 ,2 ]
He, Yang [5 ]
Wang, Yulei [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Luoyang Elect Equipment Testing Ctr, Luoyang 471000, Peoples R China
[4] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[5] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger-Maxwell equations; Symplectic structure; Discrete Poisson bracket; Geometric algorithms; First-principle simulation; ABOVE-THRESHOLD IONIZATION; HIGH-HARMONIC GENERATION; FREQUENCY LASER FIELDS; ELECTROMAGNETIC-FIELD; ATOMS; STABILIZATION; ABSORPTION; EQUATIONS; ELECTRONS; PHYSICS;
D O I
10.1016/j.jcp.2017.08.033
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon-matter interactions described by the Schrodinger-Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. This new numerical capability enables us to carry out first-principle based simulation study of important photon-matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:441 / 452
页数:12
相关论文
共 50 条