A simpler, affine-invariant, multivariate, distribution-free sign test

被引:81
|
作者
Randles, RH [1 ]
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
关键词
direction test; nonparametric;
D O I
10.2307/2669766
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A simpler multivariate sign test is proposed that uses the transformation-retransformation approach of Chakraborty, Chaudhuri, and Oja together with a directional transformation due to Tyler. This produces a multivariate sign test that is practical to apply to data of any dimension, makes minimal assumptions about the underlying distribution, and has a small-sample distribution-free property over a broad class of population models. It is shown to perform very well in comparison to Hotelling's T-2 and other multivariate sign tests for heavy-tailed and skewed distributions.
引用
收藏
页码:1263 / 1268
页数:6
相关论文
共 50 条
  • [1] An affine-invariant multivariate sign test for cluster correlated data
    Larocque, D
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (04): : 437 - 455
  • [2] A DISTRIBUTION-FREE MULTIVARIATE SIGN TEST BASED ON INTERDIRECTIONS
    RANDLES, RH
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) : 1045 - 1050
  • [3] A conditionally distribution-free multivariate sign test for one-sided alternatives
    Larocque, D
    Labarre, M
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (466) : 499 - 509
  • [4] Lower bounds for multivariate approximation by affine-invariant dictionaries
    Maiorov, V
    Meir, R
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) : 1569 - 1575
  • [5] AFFINE INVARIANT MULTIVARIATE MULTISAMPLE SIGN TESTS
    HETTMANSPERGER, TP
    OJA, H
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1994, 56 (01): : 235 - 249
  • [6] Affine-invariant rank tests for multivariate independence in independent component models
    Oja, Hannu
    Paindaveine, Davy
    Taskinen, Sara
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 2372 - 2419
  • [7] The geometry of the affine invariant multivariate sign and rank methods
    Hettmansperger, TP
    Möttönen, J
    Oja, H
    JOURNAL OF NONPARAMETRIC STATISTICS, 1999, 11 (1-3) : 271 - 285
  • [8] Affine-invariant multivariate one-sample signed-rank tests
    Hettmansperger, TP
    Mottonen, J
    Oja, H
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) : 1591 - 1600
  • [9] AN AFFINE INVARIANT BIVARIATE VERSION OF THE SIGN TEST
    BROWN, BM
    HETTMANSPERGER, TP
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1989, 51 (01): : 117 - 125
  • [10] A Distribution-Free Multivariate Control Chart
    Chen, Nan
    Zi, Xuemin
    Zou, Changliang
    TECHNOMETRICS, 2016, 58 (04) : 448 - 459