An Analysis of Local Search for the Bi-objective Bidimensional Knapsack Problem

被引:0
|
作者
Bezerra, Leonardo C. T. [1 ]
Lopez-Ibanez, Manuel [1 ]
Stutzle, Thomas [1 ]
机构
[1] Univ Libre Bruxelles, IRIDIA, Brussels, Belgium
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Local search techniques are increasingly often used in multiobjective combinatorial optimization due to their ability to improve the performance of metaheuristics. The efficiency of multi-objective local search techniques heavily depends on factors such as (i) neighborhood operators, (ii) pivoting rules and (iii) bias towards good regions of the objective space. In this work, we conduct an extensive experimental campaign to analyze such factors in a Pareto local search (PLS) algorithm for the bi-objective bidimensional knapsack problem (bBKP). In the first set of experiments, we investigate PLS as a stand-alone algorithm, starting from random and greedy solutions. In the second set, we analyze PLS as a post-optimization procedure.
引用
收藏
页码:85 / 96
页数:12
相关论文
共 50 条
  • [1] On Local Search for Bi-objective Knapsack Problems
    Liefooghe, Arnaud
    Paquete, Luis
    Figueira, Jose Rui
    [J]. EVOLUTIONARY COMPUTATION, 2013, 21 (01) : 179 - 196
  • [2] The bi-objective quadratic multiple knapsack problem: Model and heuristics
    Chen, Yuning
    Hao, Jin-Kao
    [J]. KNOWLEDGE-BASED SYSTEMS, 2016, 97 : 89 - 100
  • [3] Local Search Effects in Bi-Objective Orienteering
    Bossek, Jakob
    Grimme, Christian
    Meisel, Stephan
    Rudolph, Gunter
    Trautmann, Heike
    [J]. GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 585 - 592
  • [4] A reduction dynamic programming algorithm for the bi-objective integer knapsack problem
    Rong, Aiying
    Figueira, Jose Rui
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 231 (02) : 299 - 313
  • [5] A Dynamic Programming Algorithm for Solving Bi-Objective Fuzzy Knapsack Problem
    Singh, V. P.
    Chakraborty, D.
    [J]. MATHEMATICS AND COMPUTING, 2015, 139 : 289 - 306
  • [6] On branching heuristics for the bi-objective 0/1 unidimensional knapsack problem
    Audrey Cerqueus
    Xavier Gandibleux
    Anthony Przybylski
    Frédéric Saubion
    [J]. Journal of Heuristics, 2017, 23 : 285 - 319
  • [7] Exact algorithm for bi-objective 0-1 knapsack problem
    Jolai, Fariborz
    Rezaee, M. J.
    Rabbani, M.
    Razmi, J.
    Fattahi, Pariviz
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 194 (02) : 544 - 551
  • [8] On branching heuristics for the bi-objective 0/1 unidimensional knapsack problem
    Cerqueus, Audrey
    Gandibleux, Xavier
    Przybylski, Anthony
    Saubion, Frederic
    [J]. JOURNAL OF HEURISTICS, 2017, 23 (05) : 285 - 319
  • [9] Reference Line Guided Pareto Local Search for Bi-objective Traveling Salesman Problem
    Xia, Chao
    Cai, Xinye
    Fan, Zhun
    Sulaman, Muhammad
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1, 2017, : 50 - 56
  • [10] NSGAII With Local Search Based Heavy Perturbation for Bi-Objective Weighted Clique Problem
    Cai, Dunbo
    Gao, Yuhui
    Yin, Minghao
    [J]. IEEE ACCESS, 2018, 6 : 51253 - 51261