Parameter estimation for partially observed stochastic differential equations driven by fractional Brownian motion

被引:4
|
作者
Wei, Chao [1 ]
机构
[1] Anyang Normal Univ, Sch Math & Stat, Anyang 455000, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 07期
基金
中国国家自然科学基金;
关键词
parameter estimation; partially observed stochastic differential equations; fractional Brownian motion; strong consistency; asymptotic normality; ORNSTEIN-UHLENBECK PROCESS; ESTIMATION ALGORITHM; STATE ESTIMATION; NETWORKS; SYSTEMS; MODEL;
D O I
10.3934/math.2022717
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with parameter estimation for partially observed stochastic differential equations driven by fractional Brownian motion. Firstly, the state estimation equation is given and the parameter estimator is derived. Then, the strong consistency and asymptotic normality of the maximum likelihood estimator are derived by applying the strong law of large numbers for continuous martingales and the central limit theorem for stochastic integrals with respect to Gaussian martingales. Finally, an example is provided to verify the results.
引用
下载
收藏
页码:12952 / 12961
页数:10
相关论文
共 50 条
  • [1] Bayesian parameter inference for partially observed stochastic differential equations driven by fractional Brownian motion
    Mohamed Maama
    Ajay Jasra
    Hernando Ombao
    Statistics and Computing, 2023, 33
  • [2] Bayesian parameter inference for partially observed stochastic differential equations driven by fractional Brownian motion
    Maama, Mohamed
    Jasra, Ajay
    Ombao, Hernando
    STATISTICS AND COMPUTING, 2023, 33 (01)
  • [3] Bayesian inference for partially observed stochastic differential equations driven by fractional Brownian motion
    Beskos, A.
    Dureau, J.
    Kalogeropoulos, K.
    BIOMETRIKA, 2015, 102 (04) : 809 - 827
  • [4] Parameter Estimation for Stochastic Differential Equations Driven by Mixed Fractional Brownian Motion
    Song, Na
    Liu, Zaiming
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [5] Drift parameter estimation for nonlinear stochastic differential equations driven by fractional Brownian motion
    Hu, Yaozhong
    Nualart, David
    Zhou, Hongjuan
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2019, 91 (08) : 1067 - 1091
  • [6] Parameter estimation in stochastic differential equation driven by fractional Brownian motion
    Filatova, Daria
    Grzywaczewski, Marek
    Shybanova, Elizaveta
    Zili, Mounir
    EUROCON 2007: THE INTERNATIONAL CONFERENCE ON COMPUTER AS A TOOL, VOLS 1-6, 2007, : 2111 - 2117
  • [7] Maximum likelihood estimation in partially observed Stochastic differential. System driven by a fractional Brownian motion
    Bishwal, JPN
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2003, 21 (05) : 995 - 1007
  • [8] Stochastic differential equations driven by fractional Brownian motion
    Xu, Liping
    Luo, Jiaowan
    STATISTICS & PROBABILITY LETTERS, 2018, 142 : 102 - 108
  • [9] Hurst Index Estimation in Stochastic Differential Equations Driven by Fractional Brownian Motion
    Jan Gairing
    Peter Imkeller
    Radomyra Shevchenko
    Ciprian Tudor
    Journal of Theoretical Probability, 2020, 33 : 1691 - 1714
  • [10] Hurst Index Estimation in Stochastic Differential Equations Driven by Fractional Brownian Motion
    Gairing, Jan
    Imkeller, Peter
    Shevchenko, Radomyra
    Tudor, Ciprian
    JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (03) : 1691 - 1714