Necessary conditions for admissibility of matrix linear estimators in a multivariate linear model

被引:1
|
作者
Miyaoka, Etsuo [1 ]
Noda, Kazuo [1 ]
机构
[1] Tokyo Univ Sci, Dept Math, Shinjuku Ku, Tokyo 162, Japan
关键词
Parameter matrix linear function; Quadratic matrix loss functions; Matrix normal distributions; Unknown covariance matrix; The Stein problem; James-Stein type matrix estimator;
D O I
10.1007/s00184-009-0238-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article provides necessary conditions for the admissibility of matrix linear estimators of an estimable parameter matrix linear function under two kinds of quadratic matrix loss functions in a multivariate linear model following a family of matrix normal distributions, where the covariance matrix associated is completely unknown. Further it is demonstrated that if a more concrete condition supplied for one of the subdivided conditions is satisfied, then the special condition concerning the Stein problem is necessary for the admissibility of the kind of estimators under each of the loss functions.
引用
收藏
页码:21 / 35
页数:15
相关论文
共 50 条