3D triangle mesh smoothing via adaptive MMSE filtering

被引:7
|
作者
Mashiko, T [1 ]
Yagou, H [1 ]
Wei, DM [1 ]
Ding, YD [1 ]
Wu, GF [1 ]
机构
[1] Univ Aizu, Shape Modeling Lab, Aizu Wakamatsu 9658580, Japan
关键词
D O I
10.1109/CIT.2004.1357282
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces an effective mesh smoothing method for 3D noisy shapes via the adaptive MMSE (minimum mean squared error) filter The adaptive MMSE filter is applied to modify the face normals of triangle meshes and then mesh vertex positions are reconstructed in order to satisfy the modified normals. We also compare quantitatively and visually the adaptive MMSE filter to 3D triangle meshes with the conventional and simple Laplacian smoothing and mean and median filtering schemes. The experiments demonstrate that the adaptive MMSE filter applied to triangle meshes with round shapes and low frequency noise outperforms the existing smoothing schemes mentioned above.
引用
收藏
页码:734 / 740
页数:7
相关论文
共 50 条
  • [1] Mesh smoothing via adaptive bilateral filtering
    Hou, QB
    Bai, L
    Wang, YS
    [J]. COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 273 - 280
  • [2] Compression of 3D triangle mesh sequences
    Yang, JH
    Kim, CS
    Lee, SU
    [J]. 2001 IEEE FOURTH WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, 2001, : 181 - 186
  • [3] An optimal algorithm for 3D triangle mesh slicing
    Minetto, Rodrigo
    Volpato, Neri
    Stolfi, Jorge
    Gregori, Rodrigo M. M. H.
    da Silva, Murilo V. G.
    [J]. COMPUTER-AIDED DESIGN, 2017, 92 : 1 - 10
  • [4] STATIC 3D TRIANGLE MESH COMPRESSION OVERVIEW
    Aviles, Marcos
    Moran, Francisco
    [J]. 2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 2684 - 2687
  • [5] A PARTIAL STEGANOGRAPHY ALGORITHM FOR 3D TRIANGLE MESH
    Jiao, Ran
    [J]. PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2, 2017, : 361 - 365
  • [6] 3D adaptive mesh refinement
    Merrouche, A
    Selman, A
    Knopf-Lenoir, C
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1998, 14 (05): : 397 - 407
  • [7] A Boundary Identification Method for 3D Closed Triangle Mesh
    Yao, Yuan
    Kong, Lingxia
    Hu, Qingxi
    [J]. 2009 IEEE 10TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED INDUSTRIAL DESIGN & CONCEPTUAL DESIGN, VOLS 1-3: E-BUSINESS, CREATIVE DESIGN, MANUFACTURING - CAID&CD'2009, 2009, : 870 - 873
  • [8] Lapped spectral decomposition for 3D triangle mesh compression
    Rondao-Alface, R
    Macq, B
    Cayre, F
    Schmitt, F
    Maître, H
    [J]. 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 1, PROCEEDINGS, 2003, : 781 - 784
  • [9] 3D mesh compression using triangle fan structure
    Sim, JY
    Kim, CS
    Lee, SU
    [J]. 2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL II, PROCEEDINGS, 2002, : 257 - 260
  • [10] Anisotropic feature-preserving smoothing of 3D mesh
    Tang, J
    Zhang, FY
    [J]. COMPUTER GRAPHICS, IMAGING AND VISION: NEW TRENDS, 2005, : 373 - 378