Hippocampus segmentation on epilepsy and Alzheimer's disease studies with multiple convolutional neural networks

被引:32
|
作者
Carmo, Diedre [1 ]
Silva, Bruna [2 ]
Yasuda, Clarissa [2 ]
Rittner, Leticia [1 ]
Lotufo, Roberto [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, Campinas, SP, Brazil
[2] Univ Estadual Campinas, Fac Med Sci, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Deep learning; Hippocampus segmentation; Convolutional neural networks; Alzheimer's disease; Epilepsy; ATLAS SEGMENTATION;
D O I
10.1016/j.heliyon.2021.e06226
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Hippocampus segmentation on magnetic resonance imaging is of key importance for the diagnosis, treatment decision and investigation of neuropsychiatric disorders. Automatic segmentation is an active research field, with many recent models using deep learning. Most current state-of-the art hippocampus segmentation methods train their methods on healthy or Alzheimer's disease patients from public datasets. This raises the question whether these methods are capable of recognizing the hippocampus on a different domain, that of epilepsy patients with hippocampus resection. New Method: In this paper we present a state-of-the-art, open source, ready-to-use, deep learning based hippocampus segmentation method. It uses an extended 2D multi-orientation approach, with automatic preprocessing and orientation alignment. The methodology was developed and validated using HarP, a public Alzheimer's disease hippocampus segmentation dataset. Results and Comparisons: We test this methodology alongside other recent deep learning methods, in two domains: The HarP test set and an in-house epilepsy dataset, containing hippocampus resections, named HCUnicamp. We show that our method, while trained only in HarP, surpasses others from the literature in both the HarP test set and HCUnicamp in Dice. Additionally, Results from training and testing in HCUnicamp volumes are also reported separately, alongside comparisons between training and testing in epilepsy and Alzheimer's data and vice versa. Conclusion: Although current state-of-the-art methods, including our own, achieve upwards of 0.9 Dice in HarP, all tested methods, including our own, produced false positives in HCUnicamp resection regions, showing that there is still room for improvement for hippocampus segmentation methods when resection is involved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease
    Liu, Manhua
    Li, Fan
    Yan, Hao
    Wang, Kundong
    Ma, Yixin
    Shen, Li
    Xu, Mingqing
    NEUROIMAGE, 2020, 208
  • [2] GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR ALZHEIMER'S DISEASE CLASSIFICATION
    Song, Tzu-An
    Chowdhury, Samadrita Roy
    Yang, Fan
    Jacobs, Heidi
    El Fakhri, Georges
    Li, Quanzheng
    Johnson, Keith
    Dutta, Joyita
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 414 - 417
  • [3] A hybrid Convolutional and Recurrent Neural Network for Hippocampus Analysis in Alzheimer's Disease
    Li, Fan
    Liu, Manhua
    JOURNAL OF NEUROSCIENCE METHODS, 2019, 323 : 108 - 118
  • [4] Segmentation of the Hippocampus for Detection of Alzheimer's Disease
    Hajiesmaeili, Maryam
    Bagherinakhjavanlo, Bashir
    Dehmeshki, Jamshid
    Ellis, Tim
    ADVANCES IN VISUAL COMPUTING, ISVC 2012, PT I, 2012, 7431 : 42 - 50
  • [5] The promise of convolutional neural networks for the early diagnosis of the Alzheimer?s disease
    Erdogmus, Pakize
    Kabakus, Abdullah Talha
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [6] Neural networks for longitudinal studies in Alzheimer's disease
    Tandon, R
    Adak, S
    Kaye, JA
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2006, 36 (03) : 245 - 255
  • [7] Convolutional neural networks for Alzheimer's disease detection on MRI images
    Ebrahimi, Amir
    Luo, Suhuai
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (02)
  • [8] Early Diagnosis of Alzheimer's Disease Based on Convolutional Neural Networks
    Mehmood, Atif
    Abugabah, Ahed
    AlZubi, Ahmed Ali
    Sanzogni, Louis
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 43 (01): : 305 - 315
  • [9] On the design of convolutional neural networks for automatic detection of Alzheimer's disease
    Liu, Sheng
    Yadav, Chhavi
    Fernandez-Granda, Carlos
    Razavian, Narges
    MACHINE LEARNING FOR HEALTH WORKSHOP, VOL 116, 2019, 116 : 184 - 201
  • [10] Microscopic image segmentation of hippocampus for Alzheimer's disease
    Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
    不详
    Qinghua Daxue Xuebao, 2008, 9 (1511-1514):