CO2-switchable response of protein microtubules: behaviour and mechanism

被引:5
|
作者
Yang, Guang [1 ]
Hu, Rongting [1 ]
Ding, Hong-ming [2 ]
Kochovski, Zdravko [3 ]
Mei, Shilin [3 ]
Lu, Yan [3 ,4 ]
Ma, Yu-qiang [5 ,6 ]
Chen, Guosong [1 ]
Jiang, Ming [1 ]
机构
[1] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
[2] Soochow Univ, Ctr Soft Condensed Matter Phys & Interdisciplinar, Suzhou 215006, Peoples R China
[3] Helmholtz Zentrum Berlin Mat & Energie, Soft Matter & Funct Mat, D-14109 Berlin, Germany
[4] Univ Potsdam, Inst Chem, D-14467 Potsdam, Germany
[5] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[6] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
DRUG-DELIVERY; ASSEMBLIES; HYDROGELS; POLYMERS; DRIVEN;
D O I
10.1039/c8qm00245b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, we proposed a small molecular inducing ligand strategy to assemble proteins into highly-ordered structures via dual non-covalent interactions, i.e. carbohydrate-protein interaction and dimerization of Rhodamine B. Using this approach, artificial protein microtubules were successfully constructed. In this study, we find that these microtubules exhibit a perfect CO2 responsiveness; assembly and disassembly of these microtubules were nicely controlled by the alternative passage of CO2 and N-2. Upon the injection of CO2, a negative net-charged SBA turns into a neutral or positive net-charged SBA, which elongated, to some extent, the effective distance between SBA and Rhodamine B, resulting in the disassociation of the Rhodamine B dimer. Further experimental and simulation results reveal that the CO2-responsive mechanism differs from that of solubility change of the previously reported CO2-responsive synthetic materials.
引用
收藏
页码:1642 / 1646
页数:5
相关论文
共 50 条
  • [1] CO2-switchable materials
    Cunningham, Michael F.
    Jessop, Philip G.
    GREEN MATERIALS, 2014, 2 (02) : 53 - 53
  • [2] CO2-Switchable colloids
    Cunningham, Michael F.
    Jessop, Philip G.
    CHEMICAL COMMUNICATIONS, 2023, 59 (89) : 13272 - 13288
  • [3] CO2-switchable wormlike micelles
    Zhang, Yongmin
    Feng, Yujun
    Wang, Jiyu
    He, Shuai
    Guo, Zanru
    Chu, Zonglin
    Dreiss, Cecile A.
    CHEMICAL COMMUNICATIONS, 2013, 49 (43) : 4902 - 4904
  • [4] CO2-switchable drying agents
    Boniface, Kyle J.
    Dykeman, Ryan R.
    Cormier, Alex
    Wang, Hong-Bo
    Mercer, Sean M.
    Liu, Guojun
    Cunningham, Michael. F.
    Jessop, Philip G.
    GREEN CHEMISTRY, 2016, 18 (01) : 208 - 213
  • [5] A CO2-switchable surface on aluminium
    Liu, Hanbin
    Yuan, Xilong
    Ho, Jaddie
    Cunningham, Michael F.
    Oleschuk, Richard D.
    Jessop, Philip G.
    APPLIED SURFACE SCIENCE, 2020, 525 (525)
  • [6] CO2-Switchable Cellulose Nanocrystal Hydrogels
    Oechsle, Anna-Lena
    Lewis, Lev
    Hamad, Wadood Y.
    Hatzikiriakos, Savvas G.
    MacLachlan, Mark J.
    CHEMISTRY OF MATERIALS, 2018, 30 (02) : 376 - 385
  • [7] CO2-switchable viscoelastic surfactants.
    Feng, Yujun
    JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 2022, 99 : 171 - 171
  • [8] CO2-switchable polysaccharide graft copolymers
    Huang, Yong
    Che, Ning
    Liu, Ruigang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [9] A guide to the selection of switchable functional groups for CO2-switchable compounds
    Alshamrani, A. K.
    Vanderveen, J. R.
    Jessop, P. G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (28) : 19276 - 19288
  • [10] CO2-Switchable microemulsion based on a pseudogemini surfactant
    Liu, Dongfang
    Suo, Yuxin
    Tan, Jiang
    Lu, Hongsheng
    SOFT MATTER, 2017, 13 (20) : 3783 - 3788