Affine layer segmentation and adjacency graphs for vortex detection

被引:0
|
作者
Heroor, S [1 ]
Cohen, I [1 ]
机构
[1] Univ So Calif, Inst Robot & Intelligent Syst, Los Angeles, CA 90089 USA
关键词
D O I
10.1109/ICPR.2004.1333744
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we review and present different methods for the detection and characterization of vortices. Our algorithm works on the segmentation of the image into affine layers. These layers are computed using a parametric tensor voting and encoded in an adjacency graph. Paths are computed from the adjacency graph and are used for characterizing paths' properties such as: critical points and vortices. We illustrate the proposed approach to a satellite image sequence of water vapor in the atmosphere.
引用
收藏
页码:223 / 226
页数:4
相关论文
共 50 条
  • [1] The Adjacency Graphs of FSRs With Affine Characteristic Functions
    Li, Ming
    Lin, Dongdai
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (01) : 649 - 658
  • [2] The adjacency graphs of FSRs with a class of affine characteristic functions
    Dong, Yu-Jie
    Tian, Tian
    Qi, Wen-Feng
    Ma, Zhen
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2018, 53 : 21 - 35
  • [3] Color object detection using pyramidal adjacency graphs
    Lozano, V
    Colantoni, P
    Laget, B
    [J]. INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL III, 1996, : 1007 - 1010
  • [4] Graphs with the n-e.c. adjacency property constructed from affine planes
    Baker, C. A.
    Bonato, Anthony
    Browne, Julia M. Nowlin
    Szonyi, Tamas
    [J]. DISCRETE MATHEMATICS, 2008, 308 (5-6) : 901 - 912
  • [5] Random walk and front propagation on watershed adjacency graphs for multilabel image segmentation
    Chefd'hotel, Christophe
    Sebbane, Alexis
    [J]. 2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 2260 - 2266
  • [6] ON AN ADJACENCY PROPERTY OF GRAPHS
    EXOO, G
    [J]. JOURNAL OF GRAPH THEORY, 1981, 5 (04) : 371 - 378
  • [7] ADJACENCY GRAPHS OF A COMPLEX
    DEWDNEY, AK
    HARARY, F
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1976, 26 (01) : 137 - 144
  • [8] ON THE ADJACENCY DIMENSION OF GRAPHS
    Estrada-Moreno, A.
    Ramirez-Cruz, Y.
    Rodriguez-Velazquez, J. A.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (01) : 102 - 127
  • [9] MATCHING REGION ADJACENCY GRAPHS
    FLAVELL, S
    WINTER, S
    WILSON, D
    [J]. MICROPROCESSING AND MICROPROGRAMMING, 1991, 31 (1-5): : 31 - 36
  • [10] Adjacency posets of planar graphs
    Felsner, Stefan
    Li, Ching Man
    Trotter, William T.
    [J]. DISCRETE MATHEMATICS, 2010, 310 (05) : 1097 - 1104