Local linear double and asymmetric kernel estimation of conditional quantiles

被引:1
|
作者
Knefati, Muhammad Anas [1 ]
Oulidi, Abderrahim [2 ]
Abdous, Belkacem [3 ]
机构
[1] Univ Poitiers, Fac Sci, Dept Math, Poitiers, France
[2] Rabat Int Univ, Dept Stat & Actuarial, Rabat, Morocco
[3] Univ Laval, Dept Prevent & Social Med, Quebec City, PQ, Canada
关键词
Asymmetric kernels; Beta kernels; Double kernel conditional quantile estimation; Gamma kernels; Quantile regression; 62G08; 62G05; and; 62G20; NONPARAMETRIC-ESTIMATION; REGRESSION QUANTILES; SMOOTHERS; CURVES;
D O I
10.1080/03610926.2014.889923
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work, we propose and investigate a family of non parametric quantile regression estimates. The proposed estimates combine local linear fitting and double kernel approaches. More precisely, we use a Beta kernel when covariate's support is compact and Gamma kernel for left-bounded supports. Finite sample properties together with asymptotic behavior of the proposed estimators are presented. It is also shown that these estimates enjoy the property of having finite variance and resistance to sparse design.
引用
收藏
页码:3473 / 3488
页数:16
相关论文
共 50 条
  • [1] Forecasting wind power quantiles using conditional kernel estimation
    Taylor, James W.
    Jeon, Jooyoung
    [J]. RENEWABLE ENERGY, 2015, 80 : 370 - 379
  • [2] Functional data analysis: local linear estimation of the L1-conditional quantiles
    Al-Awadhi, Fahimah A.
    Kaid, Zoulikha
    Laksaci, Ali
    Ouassou, Idir
    Rachdi, Mustapha
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2019, 28 (02): : 217 - 240
  • [3] Spatial local linear estimation of the L1-conditional quantiles for functional regressors
    Almanjahie, Ibrahim M.
    Elmezouar, Zouaoui Chikr
    Bachir, Bachir Ahmed
    Kaid, Zoulikha
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (23) : 5666 - 5685
  • [4] Simultaneous estimation of linear conditional quantiles with penalized splines
    Lian, Heng
    Meng, Jie
    Fan, Zengyan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 141 : 1 - 21
  • [5] Estimation of conditional quantiles by a new smoothing approximation of asymmetric loss functions
    Zhao, GH
    Teo, KL
    Chan, KS
    [J]. STATISTICS AND COMPUTING, 2005, 15 (01) : 5 - 11
  • [6] Estimation of conditional quantiles by a new smoothing approximation of asymmetric loss functions
    G. H. Zhao
    K. L. Teo
    K. S. Chan
    [J]. Statistics and Computing, 2005, 15 : 5 - 11
  • [7] Kernel methods for estimating derivatives of conditional quantiles
    Lee, Young Kyung
    Lee, Eun Ryung
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2008, 37 (04) : 365 - 373
  • [8] Functional Kernel Estimators of Conditional Extreme Quantiles
    Gardes, Laurent
    Girard, Stephan
    [J]. RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 135 - 140
  • [9] Kernel methods for estimating derivatives of conditional quantiles
    Young Kyung Lee
    Eun Ryung Lee
    [J]. Journal of the Korean Statistical Society, 2008, 37 : 365 - 373
  • [10] Functional kernel estimators of large conditional quantiles
    Gardes, Laurent
    Girard, Stephane
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 1715 - 1744