An Example of an Improvable Rao-Blackwell Improvement, Inefficient Maximum Likelihood Estimator, and Unbiased Generalized Bayes Estimator

被引:7
|
作者
Galili, Tal [1 ]
Meilijson, Isaac [1 ]
机构
[1] Tel Aviv Univ, Dept Stat & Operat Res, IL-69978 Tel Aviv, Israel
来源
AMERICAN STATISTICIAN | 2016年 / 70卷 / 01期
基金
欧洲研究理事会;
关键词
Improper prior; Minimal sufficiency; Uniform distribution; Uniformly minimum-variance unbiased estimator;
D O I
10.1080/00031305.2015.1100683
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Rao-Blackwell theorem offers a procedure for converting a crude unbiased estimator of a parameter into a better one, in fact unique and optimal if the improvement is based on a minimal sufficient statistic that is complete. In contrast, behind every minimal sufficient statistic that is not complete, there is an improvable Rao-Blackwell improvement. This is illustrated via a simple example based on the uniform distribution, in which a rather natural Rao-Blackwell improvement is uniformly improvable. Furthermore, in this example the maximum likelihood estimator is inefficient, and an unbiased generalized Bayes estimator performs exceptionally well. Counterexamples of this sort can be useful didactic tools for explaining the true nature of a methodology and possible consequences when some of the assumptions are violated.
引用
收藏
页码:108 / 113
页数:6
相关论文
共 44 条
  • [1] WEAK CONVERGENCE OF RAO-BLACKWELL ESTIMATOR OF A DISTRIBUTION FUNCTION
    BHATTACHARYYA, BB
    SEN, PK
    [J]. ANNALS OF PROBABILITY, 1977, 5 (03): : 500 - 510
  • [2] Unbiased maximum likelihood estimator for underwater DOA estimation
    Hou, Yunshan
    Zhang, Lijie
    Huang, Jianguo
    [J]. ICIEA 2008: 3RD IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, PROCEEDINGS, VOLS 1-3, 2008, : 976 - 979
  • [3] Gibbs sampler based λ-dynamics utilizing a Rao-Blackwell estimator for alchemical free energy calculation
    Ding, Xinqiang
    Vilseck, Jonah
    Hayes, Ryan
    Brooks, Charles
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [4] Gibbs Sampler-Based λ-Dynamics and Rao-Blackwell Estimator for Alchemical Free Energy Calculation
    Ding, Xinqiang
    Vilseck, Jonah Z.
    Hayes, Ryan L.
    Brooks, Charles L., III
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (06) : 2501 - 2510
  • [5] Equivalence between Bayes and the maximum likelihood estimator in queue
    Singh, Saroja Kumar
    Acharya, Sarat Kumar
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (19) : 4780 - 4793
  • [6] COSMIC MICROWAVE BACKGROUND LIKELIHOOD APPROXIMATION BY A GAUSSIANIZED BLACKWELL-RAO ESTIMATOR
    Rudjord, O.
    Groeneboom, N. E.
    Eriksen, H. K.
    Huey, Greg
    Gorski, K. M.
    Jewell, J. B.
    [J]. ASTROPHYSICAL JOURNAL, 2009, 692 (02): : 1669 - 1677
  • [8] ON THE MAXIMUM LIKELIHOOD ESTIMATOR IN THE GENERALIZED BETA REGRESSION MODEL
    Rydlewski, Jerzy P.
    Mielczarek, Dominik
    [J]. OPUSCULA MATHEMATICA, 2012, 32 (04) : 761 - 774
  • [9] Admissibility and inadmissibility of a generalized Bayes unbiased estimator in a multivariate linear model
    Noda, K
    Wu, QG
    Shimizu, K
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 93 (1-2) : 197 - 210
  • [10] On the maximum likelihood estimator for the Generalized Extreme-Value distribution
    Buecher, Axel
    Segers, Johan
    [J]. EXTREMES, 2017, 20 (04) : 839 - 872