THE IMPACT OF A HAUSMAN PRETEST ON THE ASYMPTOTIC SIZE OF A HYPOTHESIS TEST

被引:24
|
作者
Guggenberger, Patrik [1 ]
机构
[1] Univ Calif Los Angeles, Dept Econ, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
MODEL SELECTION; INFERENCE; PARAMETERS; VALIDITY; WEAK;
D O I
10.1017/S0266466609100026
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper investigates the asymptotic sire properties of a two-stage test in the linear instrumental variables model when in the first stage a Hausman (1978) specification test is used as a pretest of exogeneity of a regressor. In the second stage, a simple hypothesis about a component of the structural parameter vector is tested, using a t-statistic that is based on either the ordinary least squares (OLS) or the two-stage least squares estimator (2SLS), depending on the outcome of the Hausman pretest. The asymptotic sire of the two-stage test is derived in a model where weak instruments are ruled out by imposing a positive lower bound on the strength of the instruments. The asymptotic size equals I for empirically relevant choices of the parameter space. The size distortion is caused by it discontinuity of the asymptotic distribution of the test statistic in the correlation parameter between the structural and reduced form error terms. The Hausman pretest does not have sufficient power against correlations that are local to zero while the OLS-based t-statistic takes on large values for such nonzero correlations. Instead of using the two-stage procedure. the recommendation then is to use a I-statistic based on the 2SLS estimator or. it weak instruments are a concern, the conditional likelihood ratio test by Moreira (2003).
引用
收藏
页码:369 / 382
页数:14
相关论文
共 50 条
  • [1] The impact of a Hausman pretest on the size of a hypothesis test: The panel data case
    Guggenberger, Patrik
    [J]. JOURNAL OF ECONOMETRICS, 2010, 156 (02) : 337 - 343
  • [2] The Hausman pretest estimator
    Chmelarova, Viera
    Hill, R. Carter
    [J]. ECONOMICS LETTERS, 2010, 108 (01) : 96 - 99
  • [3] Conditional assessment of the impact of a Hausman pretest on confidence intervals
    Kabaila, Paul
    Mainzer, Rheanna
    Farchione, Davide
    [J]. STATISTICA NEERLANDICA, 2017, 71 (04) : 240 - 262
  • [4] The impact of a Hausman pretest, applied to panel data, on the coverage probability of confidence intervals
    Kabaila, Paul
    Mainzer, Rheanna
    Farchione, Davide
    [J]. ECONOMICS LETTERS, 2015, 131 : 12 - 15
  • [5] Asymptotic properties of the Hahn-Hausman test for weak-instruments
    Hausman, J
    Stock, JH
    Yogo, M
    [J]. ECONOMICS LETTERS, 2005, 89 (03) : 333 - 342
  • [6] A spatial Hausman test
    Pace, R. Kelley
    LeSage, James P.
    [J]. ECONOMICS LETTERS, 2008, 101 (03) : 282 - 284
  • [7] An alternative to confidence intervals constructed after a Hausman pretest in panel data
    Kabaila, Paul
    Mainzer, Rheanna
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2019, 61 (04) : 429 - 444
  • [8] Equivalence of LR test and Hausman test
    Qian, HL
    [J]. ECONOMETRIC THEORY, 1999, 15 (01) : 157 - 160
  • [9] Fixed effects, random effects or Hausman-Taylor? A pretest estimator
    Baltagi, BH
    Bresson, G
    Pirotte, A
    [J]. ECONOMICS LETTERS, 2003, 79 (03) : 361 - 369
  • [10] The Hausman test and weak instruments
    Hahn, Jinyong
    Ham, John C.
    Moon, Hyungsik Roger
    [J]. JOURNAL OF ECONOMETRICS, 2011, 160 (02) : 289 - 299