共 24 条
Nucleophilic catalysis of acylhydrazone equilibration for protein-directed dynamic covalent chemistry
被引:0
|作者:
Bhat, Venugopal T.
[1
]
Caniard, Anne M.
[1
]
Luksch, Torsten
[2
]
Brenk, Ruth
[2
]
Campopiano, Dominic J.
[1
]
Greaney, Michael F.
[1
]
机构:
[1] Univ Edinburgh, Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
[2] Univ Dundee, James Black Ctr, Coll Life Sci, Dundee DD1 5EH, Scotland
基金:
英国工程与自然科学研究理事会;
关键词:
GLUTATHIONE-S-TRANSFERASE;
VIRTUAL COMBINATORIAL LIBRARIES;
SCHISTOSOMA-JAPONICUM;
CHEMICAL EVOLUTION;
SYSTEMS CHEMISTRY;
DRUG DISCOVERY;
INHIBITORS;
AMPLIFICATION;
RECEPTOR;
RECOGNITION;
D O I:
10.1038/NCHEM.658
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Dynamic covalent chemistry uses reversible chemical reactions to set up an equilibrating network of molecules at thermodynamic equilibrium, which can adjust its composition in response to any agent capable of altering the free energy of the system. When the target is a biological macromolecule, such as a protein, the process corresponds to the protein directing the synthesis of its own best ligand. Here, we demonstrate that reversible acylhydrazone formation is an effective chemistry for biological dynamic combinatorial library formation. In the presence of aniline as a nucleophilic catalyst, dynamic combinatorial libraries equilibrate rapidly at pH 6.2, are fully reversible, and may be switched on or off by means of a change in pH. We have interfaced these hydrazone dynamic combinatorial libraries with two isozymes from the glutathione S-transferase class of enzyme, and observed divergent amplification effects, where each protein selects the best-fitting hydrazone for the hydrophobic region of its active site.
引用
收藏
页码:490 / 497
页数:8
相关论文