Simple inertial methods for solving split variational inclusions in Banach spaces

被引:2
|
作者
Tang, Yan [1 ,2 ]
Gibali, Aviv [3 ]
Cho, Yeol Je [4 ,5 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu, Peoples R China
[2] Chongqing Technol & Business Univ, Coll Math & Stat, Chongqing, Peoples R China
[3] ORT Braude Coll, Dept Math, Karmiel, Israel
[4] Gyeongsang Natl Univ, Dept Math Educ, Jinju 52828, South Korea
[5] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
关键词
Banach spaces; inertial technique; split variational inclusion problem; COMMON NULL POINT; MAXIMAL MONOTONE-OPERATORS; PROXIMAL ALGORITHM; STRONG-CONVERGENCE; WEAK-CONVERGENCE; ITERATIVE METHOD; FEASIBILITY; MAPPINGS; PROJECTION; APPROXIMATION;
D O I
10.1002/mma.7572
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce two simple inertial algorithms for solving the split variational inclusion problem in Banach spaces. Under mild and standard assumptions, we establish the weak and strong convergence of the proposed methods, respectively. As theoretical realization we study existence of solutions of the split common fixed point problem in Banach spaces. Several numerical examples in finite and infinite dimensional spaces compare and illustrate the performances of our schemes. Our work generalize and extend some recent relate results in the literature and also propose a simple and applicable method for solving split variational inclusions.
引用
收藏
页码:12707 / 12726
页数:20
相关论文
共 50 条
  • [1] Iterative methods for solving variational inclusions in Banach spaces
    He, Xin-Feng
    Lou, Jian
    He, Zhen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 203 (01) : 80 - 86
  • [2] A Modified inertial Halpern method for solving split monotone variational inclusion problems in Banach Spaces
    Abass, H. A.
    Ugwunnadi, G. C.
    Narain, O. K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (03) : 2287 - 2310
  • [3] A Modified inertial Halpern method for solving split monotone variational inclusion problems in Banach Spaces
    H. A. Abass
    G. C. Ugwunnadi
    O. K. Narain
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 2287 - 2310
  • [4] Iterative methods for solving a new system of variational inclusions with (A,η)-accretive operators in Banach spaces
    Chen, Jun-Min
    Fan, Tie-Gang
    Li, Xue-Fei
    INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 787 - +
  • [5] Inertial algorithm for solving split inclusion problem in Banach spaces
    Kumar, Ajay
    Tamrakar, Ekta
    CUBO-A MATHEMATICAL JOURNAL, 2023, 25 (01): : 67 - 88
  • [6] An inertial method for solving split equality quasimonotone Minty variational inequality problems in reflexive Banach spaces
    Belay, Yirga A.
    Zegeye, Habtu
    Boikanyo, Oganeditse A.
    Gidey, Hagos H.
    Kagiso, Dintle
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (05) : 2037 - 2067
  • [7] Inertial approximation method for split variational inclusion problem in Banach spaces
    Oyewole, Olawale K.
    Izuchukwu, Chinedu
    Okeke, Chibueze C.
    Mewomo, Oluwatosin T.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2020, 11 (02): : 285 - 304
  • [8] An inertial iterative method for solving split equality problem in Banach spaces
    Wang, Meiying
    Shi, Luoyi
    Guo, Cuijuan
    AIMS MATHEMATICS, 2022, 7 (10): : 17628 - 17646
  • [9] H(.,.)-accretive operator with an application for solving variational inclusions in Banach spaces
    Zou, Yun-Zhi
    Huang, Nan-Jing
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (02) : 809 - 816
  • [10] A General Iterative Process for Solving a System of Variational Inclusions in Banach Spaces
    Uthai Kamraksa
    Rabian Wangkeeree
    Journal of Inequalities and Applications, 2010