BOUNDS ON SHORT CHARACTER SUMS AND L-FUNCTIONS WITH CHARACTERS TO A POWERFUL MODULUS

被引:6
|
作者
Banks, William D. [1 ]
Shparlinski, Igor E. [2 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ New South Wales, Dept Pure Math, Sydney, NSW 2052, Australia
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2019年 / 139卷 / 01期
关键词
MEAN-VALUE THEOREM; PRIMES;
D O I
10.1007/s11854-019-0060-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We combine a classical idea of Postnikov (1956) with the method of Korobov (1974) for estimating double Weyl sums, deriving new bounds on short character sums when the modulus q has a small core Pi(p vertical bar q) p. Using this estimate, we improve certain bounds of Gallagher (1972) and Iwaniec (1974) for the corresponding L-functions. In turn, this allows us to improve the error term in the asymptotic formula for primes in short arithmetic progressions modulo a power of a fixed prime. As yet another application of our bounds, we substantially extend the classical zero-free region (which might include Siegel zeros). Finally, we improve the previous best value L = 12/5 = 2.2 of the Linnik constant for primes in arithmetic progressions modulo powers of a fixed prime to L < 2.1115.
引用
收藏
页码:239 / 263
页数:25
相关论文
共 50 条