Experimental investigation of mix design for high-strength alkali-activated slag concrete

被引:10
|
作者
Araujo Junior, Nilvan T. [1 ]
Lima, Victor M. E. [1 ]
Torres, Sara M. [1 ]
Basto, Priscilla E. A. [1 ]
Melo Neto, Antonio A. [1 ]
机构
[1] Univ Fed Pernambuco, Dept Civil & Environm Engn, Lab Binder Technol LabTag, Av Arquitetura, BR-50740550 Recife, PE, Brazil
关键词
Alkali-activated slag; High-strength concrete; IPT; EPUSP mix design method; Mechanical properties; ENGINEERING PROPERTIES; MECHANICAL-PROPERTIES; DURABILITY; PARAMETERS; SHRINKAGE; MORTARS; PASTES;
D O I
10.1016/j.conbuildmat.2021.123387
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Alkali-activated slag concrete is attracting increasing attention because of its potential as an alternative to Portland cement concrete, and it has been studied in several countries. The development of high strength alkali-activated Portland-cement-free concrete, made with ground granulated blast furnace slag and sodium silicate solution as the binder, is proposed. The Institute for Technological Research/ Polytechnic School of the University of S & atilde;o Paulo (IPT/EPUSP) mix design method, which has never been used before for production of this type of concrete, is employed. Tests of compressive strength and dynamic modulus of elasticity were carried out at 1, 3, 7, and 28 days. In addition, static modulus of elasticity and splitting tensile strength tests were performed at 28 days. The results showed that high strength alkali-activated slag concrete (HSAASC) developed high initial and final compressive strengths. The compressive strengths of the concretes ranged from 41 to 58 MPa and from 86 to 105 MPa at 1 and 28 days, respectively. The IPT/EPUSP mix design method proved to be a suitable methodology that can be followed for the efficient production of HSAASC. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Development of fly ash and slag based high-strength alkali-activated foam concrete
    Hao, Yifei
    Yang, Guangzhao
    Liang, Kaikang
    CEMENT & CONCRETE COMPOSITES, 2022, 128
  • [2] Mix Design Effects on the Durability of Alkali-Activated Slag Concrete in a Hydrochloric Acid Environment
    Teymouri, Mohammad
    Behfarnia, Kiachehr
    Shabani, Amirhosein
    SUSTAINABILITY, 2021, 13 (14)
  • [3] Sustainable high-strength alkali-activated slag concrete is achieved by recycling emulsified waste cooking oil
    Huang, Jinguang
    Huo, Yanlin
    Su, Qunshan
    Lu, Dong
    Wu, Yuanchao
    Dong, Xinhong
    Gao, Yang
    FRONTIERS IN MATERIALS, 2024, 11
  • [4] Mix Design Procedure for Alkali-Activated Slag Concrete Using Particle Packing Theory
    Thunuguntla, Chaitanya Srikrishna
    Rao, Tippabhotla Durga Gunneswara
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2018, 30 (06)
  • [5] Impact of Curing Temperature and Steel Slag Aggregates on High-Strength Self-Compacting Alkali-Activated Concrete
    Araujo, Lucas B. R.
    Targino, Daniel L. L.
    Babadopulos, Lucas F. A. L.
    Fabbri, Antonin
    Cabral, Antonio Eduardo. B.
    Chehade, Rime
    Costa, Heloina N.
    BUILDINGS, 2025, 15 (03)
  • [6] A Review of Durability and Strength Characteristics of Alkali-Activated Slag Concrete
    Mohamed, Osama Ahmed
    MATERIALS, 2019, 12 (08)
  • [7] A review on alkali-activated slag concrete
    Amer, Ismail
    Kohail, Mohamed
    El-Feky, M. S.
    Rashad, Ahmed
    Khalaf, Mohamed A.
    AIN SHAMS ENGINEERING JOURNAL, 2021, 12 (02) : 1475 - 1499
  • [8] Experimental Study of Carbonation Resistance of Alkali-Activated Slag Concrete
    Bai, Ying-Hua
    Yu, Sheng
    Chen, Wei
    ACI MATERIALS JOURNAL, 2019, 116 (03) : 95 - 104
  • [9] Study on early dynamic compressive strength of alkali-activated slag high performance concrete
    Ma, Qinyong
    Yang, Xuan
    Shi, Yuhang
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2024, 28 (09) : 2160 - 2176
  • [10] Clinkerless ultra-high strength concrete based on alkali-activated slag at high temperatures
    Cai, Rongjin
    Ye, Hailong
    CEMENT AND CONCRETE RESEARCH, 2021, 145