BILEVEL OPTIMAL CONTROL PROBLEMS WITH PURE STATE CONSTRAINTS AND FINITE-DIMENSIONAL LOWER LEVEL

被引:13
|
作者
Benita, F. [1 ]
Dempe, S. [2 ]
Mehlitz, P. [2 ]
机构
[1] Tecnol Monterrey ITESM, Dept Syst & Ind Engn, Campus Monterrey,Ave Eugenio Garza Sada Sur 2401, Monterrey 64849, NL, Mexico
[2] Tech Univ Bergakad Freiberg, Dept Math & Comp Sci, Pruferstr 9, D-09596 Freiberg, Germany
关键词
bilevel optimization; optimal control; pure state constraints; optimality conditions; partial calmness; LIPSCHITZ CONTINUITY; MATHEMATICAL PROGRAMS; MARGINAL FUNCTIONS;
D O I
10.1137/141000889
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on the development of optimality conditions for a bilevel optimal control problem with pure state constraints in the upper level and a finite-dimensional parametric optimization problem in the lower level. After transforming the problem into an equivalent single-level problem, we concentrate on the derivation of a necessary optimality condition of Pontryagin type. We point out some major difficulties arising from the bilevel structure of the original problem and its pure state constraints in the upper level leading to a degenerated maximum principle in the absence of constraint qualifications. Hence, we use a partial penalization approach and a well-known regularity condition for optimal control problems with pure state constraints to ensure the nondegeneracy of the derived maximum principle. Finally, we illustrate the applicability of the derived theory by means of a small example.
引用
收藏
页码:564 / 588
页数:25
相关论文
共 50 条
  • [1] BILEVEL OPTIMAL CONTROL WITH FINAL-STATE-DEPENDENT FINITE-DIMENSIONAL LOWER LEVEL
    Benita, F.
    Mehlitz, P.
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) : 718 - 752
  • [2] PONTRYAGIN OPTIMALITY CONDITIONS FOR GENERALIZED BILEVEL OPTIMAL CONTROL PROBLEMS WITH PURE STATE INEQUALITY CONSTRAINTS
    Idrissi, Rachid El
    Lafhim, Lahoussine
    Ouakrim, Youssef
    Journal of Applied and Numerical Optimization, 2024, 6 (02): : 229 - 248
  • [3] New finite-dimensional stochastic optimal control problems
    Charalambous, CD
    Elliott, RJ
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 435 - 439
  • [4] OPTIMAL CONTROL PROBLEMS WITH MIXED AND PURE STATE CONSTRAINTS
    Boccia, A.
    De Pinho, M. D. R.
    Vinter, R. B.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (06) : 3061 - 3083
  • [5] Finite-dimensional approximation of a class of constrained nonlinear optimal control problems
    Gunzburger, MD
    Hou, LS
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (03) : 1001 - 1043
  • [6] Finite-dimensional regularization of optimal control problems for monotone variational inequalities
    Kokurin, MY
    DOKLADY AKADEMII NAUK, 1999, 368 (04) : 439 - 441
  • [7] Finite-dimensional representations of the value functions of some optimal control problems
    Mirica, S
    CONTROL AND CYBERNETICS, 2002, 31 (03): : 779 - 801
  • [8] Minimal controllability time for finite-dimensional control systems under state constraints
    Loheac, Jerome
    Trelat, Emmanuel
    Zuazua, Enrique
    AUTOMATICA, 2018, 96 : 380 - 392
  • [9] Procedure for regularization of bilinear optimal control problems based on a finite-dimensional model*
    Arguchintsev, Alexander, V
    Srochko, Vladimir A.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2022, 18 (01): : 179 - 187
  • [10] Error estimates for the FEM approximation of optimal sparse control of elliptic equations with pointwise state constraints and finite-dimensional control space
    Merino, Pedro
    Nenjer, Alexander
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2020, 41 (05): : 1451 - 1476