Existence and stability of solitons for the nonlinear Schrodinger equation on hyperbolic space

被引:19
|
作者
Christianson, Hans [1 ]
Marzuola, Jeremy L. [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Columbia Univ, Dept Appl Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
CONCENTRATION-COMPACTNESS PRINCIPLE; KLEIN-GORDON EQUATIONS; STANDING WAVES; GROUND-STATE; SCATTERING; CALCULUS;
D O I
10.1088/0951-7715/23/1/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and stability of ground state solutions or solitons to a nonlinear stationary equation on hyperbolic space. The method of concentration compactness applies and shows that the results correlate strongly to those of Euclidean space.
引用
收藏
页码:89 / 106
页数:18
相关论文
共 50 条
  • [1] The nonlinear Schrodinger equation on hyperbolic space
    Banica, V.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (10-12) : 1643 - 1677
  • [2] ON ASYMPTOTIC STABILITY OF SOLITONS IN A NONLINEAR SCHRODINGER EQUATION
    Komech, Alexander
    Kopylova, Elena
    Stuart, David
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (03) : 1063 - 1079
  • [3] Solitons interaction and their stability based on Nonlinear Schrodinger equation
    Shahzad, Asim
    Zafrullah, M.
    [J]. 2009 SECOND INTERNATIONAL CONFERENCE ON MACHINE VISION, PROCEEDINGS, ( ICMV 2009), 2009, : 305 - +
  • [4] STABILITY OF HASIMOTO SOLITONS IN ENERGY SPACE FOR A FOURTH ORDER NONLINEAR SCHRODINGER TYPE EQUATION
    Wang, Zhong
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (07) : 4091 - 4108
  • [5] SOME L∞ SOLUTIONS OF THE HYPERBOLIC NONLINEAR SCHRODINGER EQUATION AND THEIR STABILITY
    Correia, Simao
    Figueira, Mario
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2019, 24 (1-2) : 1 - 30
  • [6] Existence and stability of discrete solitons in nonlinear Schrodinger lattices with hard potentials
    Zhu, Qing
    Zhou, Zhan
    Wang, Lin
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2020, 403
  • [7] On the existence of gap solitons in a periodic discrete nonlinear Schrodinger equation with saturable nonlinearity
    Zhou, Zhan
    Yu, Jianshe
    Chen, Yuming
    [J]. NONLINEARITY, 2010, 23 (07) : 1727 - 1740
  • [8] Existence and stability of quasiperiodic breathers in the discrete nonlinear Schrodinger equation
    Johansson, M
    Aubry, S
    [J]. NONLINEARITY, 1997, 10 (05) : 1151 - 1178
  • [9] Gaussian solitons in nonlinear Schrodinger equation
    Nassar, AB
    Bassalo, JMF
    Alencar, PTS
    de Souza, JF
    de Oliveira, JE
    Cattani, M
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2002, 117 (08): : 941 - 946
  • [10] Nonlocal solitons in the parametrically driven nonlinear Schrodinger equation: Stability analysis
    Molchan, Maxim A.
    [J]. PHYSICAL REVIEW E, 2011, 84 (05):