Sobolev meets Besov: Regularity for the Poisson equation with Dirichlet, Neumann and mixed boundary values

被引:2
|
作者
Schneider, Cornelia [1 ]
Szemenyei, Flora O. [1 ]
机构
[1] Friedrich Alexander Univ Erlangen, Appl Math 3, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Elliptic boundary value problems; Poisson equation; adaptive methods; Besov spaces; weighted Sobolev spaces; mixed weights; polyhedral cone; ELLIPTIC PROBLEMS; SPACES;
D O I
10.1142/S0219530522500026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the regularity of solutions of the Poisson equation with Dirichlet, Neumann and mixed boundary values in polyhedral cones K subset of R-3 in the specific scale B-tau,tau(alpha), 1/tau = alpha/d + 1/p of Besov spaces. The regularity of the solution in these spaces determines the order of approximation that can be achieved by adaptive and nonlinear numerical schemes. We aim for a thorough discussion of homogeneous and inhomogeneous boundary data in all settings studied and show that the solutions are much smoother in this specific Besov scale compared to the fractional Sobolev scale H-s in all cases, which justifies the use of adaptive schemes.
引用
收藏
页码:989 / 1023
页数:35
相关论文
共 50 条