Computing the minimum distance of linear codes by the error impulse method

被引:0
|
作者
Berrou, C [1 ]
Vaton, S [1 ]
Jézéquel, M [1 ]
Douillard, C [1 ]
机构
[1] Ecole Natl Super Telecommun Bretagne, F-29285 Brest, France
关键词
minimum distance; error floor; linear code; convolutional; concatenated; turbo code;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new method for computing the minimum distances of linear error-correcting codes is proposed and justified. Unlike classical techniques that rely on exhaustive or partial enumeration of codewords, this new. method-is based on the ability of the Soft-In decoder to overcome Error Impulse input patterns. It is shown that the maximum magnitude of the Error Impulse that can be corrected by the decoder is directly related to the minimum distance. This leads to a very fast algorithm to obtain minimum distances of any linear code whatever the block size and the code rate considered. In particular, the method can be advantageously worked out for turbo-like concatenated codes.
引用
收藏
页码:1017 / 1020
页数:4
相关论文
共 50 条
  • [1] Computing the minimum distances of linear codes by the error impulse method
    Berrou, C
    Vaton, S
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 5 - 5
  • [2] On computing the minimum distance of linear codes
    Mohri, M
    Morii, M
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2000, 83 (11): : 32 - 42
  • [3] On computing the minimum distance of linear codes
    Mohri, Masami
    Morii, Masakatu
    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 2000, 83 (11): : 32 - 42
  • [4] An Efficient method to find the Minimum Distance of Linear Block Codes
    Askali, Mohamed
    Nouh, Said
    Belkasmi, Mostafa
    2012 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2012, : 773 - 779
  • [5] On the error-correcting pair for MDS linear codes with even minimum distance
    He, Boyi
    Liao, Qunying
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89
  • [6] Minimum distance of linear codes and the α-invariant
    Garrousian, Mehdi
    Tohaneanu, Stefan O.
    ADVANCES IN APPLIED MATHEMATICS, 2015, 71 : 190 - 207
  • [7] Computing the Minimum Distance of Nonbinary LDPC Codes
    Liu, Lei
    Huang, Jie
    Zhou, Wuyang
    Zhou, Shengli
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (07) : 1753 - 1758
  • [8] Linear quantum codes of minimum distance three
    Ruihu Li
    Xueliang Li
    Zongben Xu
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (06) : 917 - 923
  • [9] Distribution of the Minimum Distance of Random Linear Codes
    Hao, Jing
    Huang, Han
    Livshyts, Galyna, V
    Tikhomirov, Konstantin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (10) : 6388 - 6401
  • [10] Distribution of the Minimum Distance of Random Linear Codes
    Hao, Jing
    Huang, Han
    Livshyts, Galyna
    Tikhomirov, Konstantin
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 114 - 119