Lattice-Boltzmann coupled models for advection-diffusion flow on a wide range of Peclet numbers

被引:20
|
作者
Dapelo, Davide [1 ]
Simonis, Stephan [2 ,3 ]
Krause, Mathias J. [2 ,3 ]
Bridgeman, John [1 ]
机构
[1] Univ Bradford, Fac Engn & Informat, Bradford BD7 1DP, W Yorkshire, England
[2] Karlsruhe Inst Technol, Lattice Boltzmann Res Grp, Karlsruhe, Germany
[3] Karlsruhe Inst Technol, Inst Appl & Numer Math, D-76131 Karlsruhe, Germany
基金
英国工程与自然科学研究理事会;
关键词
Lattice-Boltzmann; OpenLB; Advection-diffusion; Finite-difference; STABILITY; EQUATION; HYDRODYNAMICS;
D O I
10.1016/j.jocs.2021.101363
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Traditional Lattice-Boltzmann modelling of advection-diffusion flow is affected by numerical instability if the advective term becomes dominant over the diffusive (i.e., high-Peclet flow). To overcome the problem, two 3D one-way coupled models are proposed. In a traditional model, a Lattice-Boltzmann Navier-Stokes solver is coupled to a Lattice-Boltzmann advection-diffusion model. In a novel model, the Lattice-Boltzmann Navier-Stokes solver is coupled to an explicit finite-difference algorithm for advection-diffusion. The finite-difference algorithm also includes a novel approach to mitigate the numerical diffusivity connected with the upwind differentiation scheme. The models are validated using two non-trivial benchmarks, which includes discontinuous initial conditions and the case Pe(g) -> infinity for the first time, where Pe(g) is the grid Peclet number. The evaluation of Pe(g) alongside Pe is discussed. Accuracy, stability and the order of convergence are assessed for a wide range of Peclet numbers. Recommendations are then given as to which model to select depending on the value Pe(g)-in particular, it is shown that the coupled finite-difference/Lattice-Boltzmann provide stable solutions in the case Pe -> infinity, Pe(g) -> infinity.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A quantum algorithm for the lattice-Boltzmann method advection-diffusion equation
    Wawrzyniak, David
    Winter, Josef
    Schmidt, Steffen
    Indinger, Thomas
    Janssen, Christian F.
    Schramm, Uwe
    Adams, Nikolaus A.
    COMPUTER PHYSICS COMMUNICATIONS, 2025, 306
  • [2] The moment propagation method for advection-diffusion in the lattice Boltzmann method: Validation and Peclet number limits
    Merks, RMH
    Hoekstra, AG
    Sloot, PMA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 183 (02) : 563 - 576
  • [3] Lattice models of advection-diffusion
    Pierrehumbert, RT
    CHAOS, 2000, 10 (01) : 61 - 74
  • [4] The lattice Boltzmann advection-diffusion model revisited
    Chopard, B.
    Falcone, J. L.
    Latt, J.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 171 : 245 - 249
  • [5] The lattice Boltzmann advection-diffusion model revisited
    B. Chopard
    J. L. Falcone
    J. Latt
    The European Physical Journal Special Topics, 2009, 171 : 245 - 249
  • [6] Lattice Boltzmann simulation of advection-diffusion of chemicals and applications to blood flow
    Zhang, Hengdi
    Misbah, Chaouqi
    COMPUTERS & FLUIDS, 2019, 187 : 46 - 59
  • [7] Lattice Boltzmann method for the fractional advection-diffusion equation
    Zhou, J. G.
    Haygarth, P. M.
    Withers, P. J. A.
    Macleod, C. J. A.
    Falloon, P. D.
    Beven, K. J.
    Ockenden, M. C.
    Forber, K. J.
    Hollaway, M. J.
    Evans, R.
    Collins, A. L.
    Hiscock, K. M.
    Wearing, C.
    Kahana, R.
    Velez, M. L. Villamizar
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [8] Advection-diffusion lattice Boltzmann scheme for hierarchical grids
    Stiebler, Maik
    Toelke, Jonas
    Krafczyk, Manfred
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (07) : 1576 - 1584
  • [9] Fully Lagrangian and Lattice Boltzmann methods for the advection-diffusion equation
    Guo, Z.L.
    Shi, B.C.
    Wang, N.C.
    Journal of Scientific Computing, 1999, 14 (03): : 291 - 300
  • [10] Multiple anisotropic collisions for advection-diffusion Lattice Boltzmann schemes
    Ginzburg, Irina
    ADVANCES IN WATER RESOURCES, 2013, 51 : 381 - 404