H∞ Control for Differential-Algebraic Systems

被引:0
|
作者
Sperila, Andrei [1 ]
Tudor, Florin S. [2 ]
Ciubotaru, Bogdan D. [1 ]
Oara, Cristian [1 ]
机构
[1] Univ Politehn Bucuresti, Fac Automat Control & Comp, Splaiul Independentei 313,Sect 6, RO-060042 Bucharest, Romania
[2] Stevens Inst Technol, Sch Business, 1 Castle Point Terrace, Hoboken, NJ 07030 USA
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Robust control; singular systems; generalized state space; dynamic output feedback; algebraic Riccati equations; GENERALIZED STATE-SPACE; FEEDBACK; MATRIX;
D O I
10.1016/j.ifacol.2020.12.2577
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a differential-algebraic system, we construct the class of proper suboptimal H-infinity stabilizing controllers and give formulas in terms of realizations and solutions to appropriate Riccati equations. Copyright (C) 2020 The Authors.
引用
收藏
页码:4285 / 4290
页数:6
相关论文
共 50 条
  • [1] H2 Control for Differential-Algebraic Systems
    Sperila, Andrei
    Ciubotaru, Bogdan D.
    Oara, Cristian
    [J]. 2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, : 627 - 632
  • [2] Optimal control of differential-algebraic systems
    Mordukhovich, B
    Wang, LW
    [J]. 2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 3167 - 3172
  • [3] H∞ control for nonlinear differential-algebraic equations
    Wang, He-Sheng
    Yung, Chee-Fai
    Chang, Fan-Ren
    [J]. Proceedings of the IEEE Conference on Decision and Control, 1998, 4 : 4092 - 4097
  • [4] H∞ control for nonlinear differential-algebraic equations
    Wang, HS
    Yung, CF
    Chang, FR
    [J]. PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 4092 - 4097
  • [5] H2 Output Feedback Control of Differential-Algebraic Systems
    Sperila, Andrei
    Oara, Cristian
    Ciubotaru, Bogdan D.
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 542 - 547
  • [6] Optimal control of causal differential-algebraic systems
    Roubícek, T
    Valásek, M
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (02) : 616 - 641
  • [7] H-controllability of regular differential-algebraic systems with a distributed delay in control
    Krakhotko, V. V.
    Razmyslovich, G. P.
    [J]. IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2012, (01): : 71 - 72
  • [8] On the dimension reduction of linear differential-algebraic control systems
    Yu. M. Nechepurenko
    [J]. Doklady Mathematics, 2012, 86 : 457 - 459
  • [9] A disturbance attenuation approach for the control of differential-algebraic systems
    Di Franco, Pierluigi
    Scarciotti, Giordano
    Astolfi, Alessandro
    [J]. 2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 4695 - 4700
  • [10] Feedback linearization of nonlinear differential-algebraic control systems
    Chen, Yahao
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (03) : 1879 - 1903