Fast Kernel Classifier Construction Using Orthogonal Forward Selection to Minimise Leave-One-Out Misclassification Rate

被引:1
|
作者
Hong, X. [1 ]
Chen, S. [2 ]
Harris, C. J. [2 ]
机构
[1] Univ Reading, Dept Cybernet, Reading RG6 6AY, Berks, England
[2] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
关键词
D O I
10.1007/11816157_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a simple yet computationally efficient construction algorithm for two-class kernel classifiers. In order to optimise classifier's generalisation capability, an orthogonal forward selection procedure is used to select kernels one by one by minimising the leave-one-out (LOO) misclassification rate directly. It is shown that the computation of the LOO misclassification rate is very efficient owing to orthogonalisation. Examples are used to demonstrate that the proposed algorithm is a viable alternative to construct sparse two-class kernel classifiers in terms of performance and computational efficiency.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 15 条
  • [1] A fast linear-in-the-parameters classifier construction algorithm using orthogonal forward selection to minimize leave-one-out misclassification rate
    Hong, X.
    Chen, S.
    Harris, C. J.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2008, 39 (02) : 119 - 125
  • [2] Construction of RBF classifiers with tunable units using orthogonal forward selection based on leave-one-out misclassification rate
    Chen, S.
    Harris, C. J.
    Hong, X.
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 3358 - +
  • [3] Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization
    Chen, S
    Hong, X
    Harris, CJ
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (04): : 1708 - 1717
  • [4] Fast leave-one-out evaluation for dynamic gene selection
    Yhao, Y
    Kwoh, CK
    [J]. SOFT COMPUTING, 2006, 10 (04) : 346 - 350
  • [5] Fast leave-one-out evaluation for dynamic gene selection
    Z. Ying
    K.C. Keong
    [J]. Soft Computing, 2006, 10 : 346 - 350
  • [6] Fast leave-one-out methods for inference, model selection, and diagnostic checking
    Belotti, Federico
    Peracchi, Franco
    [J]. STATA JOURNAL, 2020, 20 (04): : 785 - 804
  • [7] Exemplar Selection via Leave-One-Out Kernel Averaged Gradient Descent and Subtractive Clustering
    Kokkinos, Yiannis
    Margaritis, Konstantinos G.
    [J]. ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2016, 2016, 475 : 292 - 304
  • [8] Kernel classifier construction using orthogonal forward selection and boosting with Fisher ratio class separability measure
    Chen, S.
    Wang, X. X.
    Hong, X.
    Harris, C. J.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (06): : 1652 - 1656
  • [9] Feature scaling for kernel fisher discriminant analysis using leave-one-out cross validation
    Bo, LF
    Wang, L
    Jiao, LC
    [J]. NEURAL COMPUTATION, 2006, 18 (04) : 961 - 978
  • [10] Backward elimination model construction for regression and classification using leave-one-out criteria
    Hong, X.
    Mitchell, R. J.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2007, 38 (02) : 101 - 113