Non-uniqueness for the Euler Equations up to Onsager's Critical Exponent

被引:14
|
作者
Daneri, Sara [1 ]
Runa, Eris [2 ]
Szekelyhidi, Laszlo [3 ]
机构
[1] Gran Sasso Sci Inst, I-67100 Laquila, Italy
[2] Deutsch Bank AG, Quant Inst, D-10585 Berlin, Germany
[3] Univ Leipzig, Inst Math, D-04009 Leipzig, Germany
基金
欧洲研究理事会;
关键词
ENERGY-DISSIPATION; WEAK SOLUTIONS;
D O I
10.1007/s40818-021-00097-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we deal with the Cauchy problem for the incompressible Euler equations in the three-dimensional periodic setting. We prove non-uniqueness for an L-2-dense set of Holder continuous initial data in the class of Holder continuous admissible weak solutions for all exponents below the Onsager-critical 1/3. Along the way, and more importantly, we identify a natural condition on "blow-up" of the associated subsolution, which acts as the signature of the non-uniqueness mechanism. This improves previous results on non-uniqueness obtained in (Daneri in Comm. Math. Phys. 329(2):745-786, 2014; Daneri and Szekelyhidi in Arch. Rat. Mech. Anal. 224: 471-514, 2017) and generalizes (Buckmaster et al. in Comm. Pure Appl. Math. 72(2):229-274, 2018).
引用
收藏
页数:44
相关论文
共 50 条