Nonparametric tests for conditional independence using conditional distributions

被引:14
|
作者
Bouezmarni, Taoufik [1 ]
Taamouti, Abderrahim [2 ]
机构
[1] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Carlos III Madrid, Dept Econ, E-28903 Getafe, Madrid, Spain
基金
加拿大自然科学与工程研究理事会;
关键词
S&P500 Index; Nadaraya-Watson estimator; Granger non-causality; nonparametric tests; conditional distribution function; time series; conditional independence; VIX volatility index; CENTRAL-LIMIT-THEOREM; U-STATISTICS; BANDWIDTH SELECTION; TIME-SERIES; REGRESSION; CAUSALITY; RETURNS; MARKET; NONCAUSALITY; VECTORS;
D O I
10.1080/10485252.2014.945447
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The concept of causality is naturally defined in terms of conditional distribution, however almost all the empirical works focus on causality in mean. This paper aims to propose a nonparametric statistic to test the conditional independence and Granger non-causality between two variables conditionally on another one. The test statistic is based on the comparison of conditional distribution functions using an L-2 metric. We use Nadaraya-Watson method to estimate the conditional distribution functions. We establish the asymptotic size and power properties of the test statistic and we motivate the validity of the local bootstrap. We ran a simulation experiment to investigate the finite sample properties of the test and we illustrate its practical relevance by examining the Granger non-causality between S&P 500 Index returns and VIX volatility index. Contrary to the conventional t-test which is based on a linear mean-regression, we find that VIX index predicts excess returns both at short and long horizons.
引用
收藏
页码:697 / 719
页数:23
相关论文
共 50 条
  • [1] A CONDITIONAL DISTRIBUTION FUNCTION BASED APPROACH TO DESIGN NONPARAMETRIC TESTS OF INDEPENDENCE AND CONDITIONAL INDEPENDENCE
    Seth, Sohan
    Principe, Jose C.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2066 - 2069
  • [2] On nonparametric conditional independence tests for continuous variables
    Li Chun
    Fan Xiaodan
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2020, 12 (03):
  • [3] Strongly consistent nonparametric tests of conditional independence
    Gyoerfi, Laszlo
    Walk, Harro
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (06) : 1145 - 1150
  • [4] Nonparametric estimation of conditional distributions
    Gyorfi, Laszlo
    Kohler, Michael
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (05) : 1872 - 1879
  • [5] Nonparametric tests for conditional independence in two-way contingency tables
    Geenens, Gery
    Simar, Leopold
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (04) : 765 - 788
  • [6] Nonparametric Bayes inference on conditional independence
    Kunihama, Tsuyoshi
    Dunson, David B.
    [J]. BIOMETRIKA, 2016, 103 (01) : 35 - 47
  • [7] A NEW NONPARAMETRIC MEASURE OF CONDITIONAL INDEPENDENCE
    Seth, Sohan
    Park, Il
    Principe, Jose C.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 2981 - 2984
  • [8] A FLEXIBLE NONPARAMETRIC TEST FOR CONDITIONAL INDEPENDENCE
    Huang, Meng
    Sun, Yixiao
    White, Halbert
    [J]. ECONOMETRIC THEORY, 2016, 32 (06) : 1434 - 1482
  • [9] A BAYESIAN NONPARAMETRIC TEST FOR CONDITIONAL INDEPENDENCE
    Teymur, Onur
    Filippi, Sarah
    [J]. FOUNDATIONS OF DATA SCIENCE, 2020, 2 (02): : 155 - 172
  • [10] NONPARAMETRIC CONDITIONAL LOCAL INDEPENDENCE TESTING
    Christgau, Alexander Mangulad
    Petersen, Lasse
    Hansen, Niels richard
    [J]. ANNALS OF STATISTICS, 2023, 51 (05): : 2116 - 2144