PBBFMM3D: A parallel black-box algorithm for kernel matrix-vector multiplication

被引:7
|
作者
Wang, Ruoxi [1 ]
Chen, Chao [1 ]
Lee, Jonghyun [2 ]
Darve, Eric [1 ,3 ]
机构
[1] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[2] Univ Hawaii Manoa, Dept Civil & Environm Engn & Water Resources Res, Honolulu, HI USA
[3] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Kernel method; Matrix-vector multiplication; Covariance matrix; Fast multipole method; Shared-memory parallelism; INTEGRAL-EQUATION METHOD; FAST MULTIPOLE METHOD; TASK-BASED FMM; PARTICLE;
D O I
10.1016/j.jpdc.2021.04.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Kernel matrix-vector product is ubiquitous in many science and engineering applications. However, a naive method requires O(N-2) operations, which becomes prohibitive for large-scale problems. To reduce the computation cost, we introduce a parallel method that provably requires O(N) operations and delivers an approximate result within a prescribed tolerance. The distinct feature of our method is that it requires only the ability to evaluate the kernel function, offering a black-box interface to users. Our parallel approach targets multi-core shared-memory machines and is implemented using vertical bar OpenMP vertical bar. Numerical results demonstrate up to 19x speedup on 32 cores. We also present a real-world application in geo-statistics, where our parallel method was used to deliver fast principle component analysis of covariance matrices. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:64 / 73
页数:10
相关论文
共 50 条
  • [1] AN EFFICIENT PARALLEL ALGORITHM FOR MATRIX-VECTOR MULTIPLICATION
    HENDRICKSON, B
    LELAND, R
    PLIMPTON, S
    [J]. INTERNATIONAL JOURNAL OF HIGH SPEED COMPUTING, 1995, 7 (01): : 73 - 88
  • [2] Synthesis and generalization of parallel algorithm for matrix-vector multiplication
    Miyasaka Y.
    Goda A.
    Mittal A.
    Fujita M.
    [J]. IPSJ Transactions on System LSI Design Methodology, 2020, 13 : 31 - 34
  • [3] The Mailman algorithm: A note on matrix-vector multiplication
    Liberty, Edo
    Zucker, Steven W.
    [J]. INFORMATION PROCESSING LETTERS, 2009, 109 (03) : 179 - 182
  • [4] A quantum algorithm for Toeplitz matrix-vector multiplication
    Gao, Shang
    Yang, Yu-Guang
    [J]. CHINESE PHYSICS B, 2023, 32 (10)
  • [5] A quantum algorithm for Toeplitz matrix-vector multiplication
    高尚
    杨宇光
    [J]. Chinese Physics B, 2023, 32 (10) : 292 - 297
  • [6] Communication balancing in parallel sparse matrix-vector multiplication
    Bisseling, RH
    Meesen, W
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2005, 21 : 47 - 65
  • [7] Parallel Sparse Matrix-Vector Multiplication Using Accelerators
    Maeda, Hiroshi
    Takahashi, Daisuke
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2016, PT II, 2016, 9787 : 3 - 18
  • [8] Giga-scale Kernel Matrix-Vector Multiplication on GPU
    Hu, Robert
    Chau, Siu Lun
    Sejdinovic, Dino
    Glaunes, Joan Alexis
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [9] Charge-mode parallel architecture for matrix-vector multiplication
    Genov, R
    Cauwenberghs, G
    [J]. PROCEEDINGS OF THE 43RD IEEE MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I-III, 2000, : 506 - 509
  • [10] Merge-based Parallel Sparse Matrix-Vector Multiplication
    Merrill, Duane
    Garland, Michael
    [J]. SC '16: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2016, : 678 - 689