Valorization of converter steel slag into eco-friendly ultra-high performance concrete by ambient CO2 pre-treatment

被引:52
|
作者
Liu, Gang [1 ,2 ]
Schollbach, Katrin [2 ]
Li, Peipeng [3 ]
Brouwers, H. J. H. [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Human Settlements, Civil Engn, Xian, Peoples R China
[2] Eindhoven Univ Technol, Dept Built Environm, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Wuhan Univ Technol, Sch Civil Engn & Architecture, Wuhan 430070, Peoples R China
关键词
Converter steel slag; Ultra-high performance concrete; Ambient carbonation; Pozzolanic reaction; Recycling;
D O I
10.1016/j.conbuildmat.2021.122580
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The converter steel slag is a by-product during the steel-making process, which usually acts as an inert ingredient in construction due to the relatively low reactivity. However, its mineral composition results in a high reactivity in a CO2 rich environment. This study reveals the modification of converter steel slag by an ambient CO(2 )pretreatment, and the application of modified converter steel slag as the supplementary cementitious material (SCM) in the design of eco-friendly ultra-high performance concrete (UHPC) by using a particle packing model. The results show that converter steel slag after ambient CO2 pretreatment is feasible to be used in eco-friendly UHPC design, which achieves a relative higher compressive strength over 150 MPa with the cement substitution from 15% to 45%, compared to non-carbonated steel slag. The ambient CO2 pretreatment can modify the physical and chemical properties of converter steel slag particles, which produces a rough and porous surface of slag particles because of the precipitation of calcium carbonate and amorphous silica gel as carbonation products. Consequently, the incorporation of carbonated steel slag improves the cement hydration, enhance the formation of ettringite and C-S-H, while densify the microstructure compared to non-carbonated slag in eco-friendly UHPCs. The leaching of potentially hazardous elements, e.g. Cr and V from carbonated steel slag can be efficiently reduced below legal limits in UHPC mixtures. (C) 2021 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [1] Design and assessment of eco-friendly ultra-high performance concrete with steel slag powder and recycled glass powder
    Xu, Jing
    Zhan, Peimin
    Zhou, Wei
    Zuo, Junqing
    Shah, Surendra P.
    He, Zhihai
    POWDER TECHNOLOGY, 2023, 419
  • [2] A new development of eco-friendly Ultra-High performance concrete (UHPC): Towards efficient steel slag application and multi-objective optimization
    Fan, Dingqiang
    Yu, Rui
    Shui, Zhonghe
    Liu, Kangning
    Feng, Yuan
    Wang, Siyu
    Li, Keke
    Tan, Junhui
    He, Yongjia
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 306
  • [3] Recycling lithium slag into eco-friendly ultra-high performance concrete: Hydration process, microstructure development, and environmental benefits
    Yang, Bohan
    Zhang, Yannian
    Zhang, Weifeng
    Sun, Houqi
    Wang, Qingjie
    Han, Dong
    JOURNAL OF BUILDING ENGINEERING, 2024, 91
  • [4] Digital fabrication of eco-friendly ultra-high performance fiber-reinforced concrete
    Arunothayan, Arun R.
    Nematollahi, Behzad
    Ranade, Ravi
    Khayat, Kamal H.
    Sanjayan, Jay G.
    CEMENT & CONCRETE COMPOSITES, 2022, 125
  • [5] Effects of Eco-friendly Fine Aggregates on Mechanical Properties of Ultra-high Performance Concrete
    Chu H.
    Jiang J.
    Li H.
    Xia G.
    Chu, Hongyan (chuhongyan@njfu.edu.cn), 1600, Cailiao Daobaoshe/ Materials Review (34): : 24029 - 24033
  • [6] Utilization of steel slag in ultra-high performance concrete with enhanced eco-friendliness
    Zhang, Xiuzhen
    Zhao, Sixue
    Liu, Zhichao
    Wang, Fazhou
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 214 : 28 - 36
  • [7] Design of Eco-friendly Ultra-high Performance Concrete with Supplementary Cementitious Materials and Coarse Aggregate
    蒋金洋
    ZHOU Wenjing
    CHU Hongyan
    WANG Fengjuan
    WANG Liguo
    FENG Taotao
    GUO Dong
    Journal of Wuhan University of Technology(Materials Science), 2019, 34 (06) : 1350 - 1359
  • [8] Design of Eco-friendly Ultra-high Performance Concrete with Supplementary Cementitious Materials and Coarse Aggregate
    Jinyang Jiang
    Wenjing Zhou
    Hongyan Chu
    Fengjuan Wang
    Liguo Wang
    Taotao Feng
    Dong Guo
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34 : 1350 - 1359
  • [9] Design of Eco-friendly Ultra-high Performance Concrete with Supplementary Cementitious Materials and Coarse Aggregate
    Jiang Jinyang
    Zhou Wenjing
    Chu Hongyan
    Wang Fengjuan
    Wang Liguo
    Feng Taotao
    Guo Dong
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2019, 34 (06): : 1350 - 1359
  • [10] Applications of Steel Slag Powder and Steel Slag Aggregate in Ultra-High Performance Concrete
    Liu, Jin
    Guo, Runhua
    ADVANCES IN CIVIL ENGINEERING, 2018, 2018