Finite two-distance-transitive graphs of valency 6

被引:0
|
作者
Jin, Wei [1 ]
Tan, Li [1 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Stat, Nanchang 330013, Jiangxi, Peoples R China
关键词
2-Distance-transitive graph; 2-arc-transitive graph; permutation group; DISTANCE-TRANSITIVE GRAPHS; CAYLEY-GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A non-complete graph Gamma is said to be (G, 2)-distance-transitive if, for i - 1, 2 and for any two vertex pairs (u(1), v(1)) and (u(2), v(2)) with d(Gamma) (u(1), v(1)) = d(Gamma) (u(2), v(2)) = i, there exists g is an element of G such that (u(1), v(1))(g) - (u(2), v(2)). This paper classifies the family of (G, 2) - distance-transitive graphs of valency 6 which are not (G, 2)-arc-transitive.
引用
收藏
页码:49 / 58
页数:10
相关论文
共 50 条
  • [1] TWO-DISTANCE-TRANSITIVE GRAPHS OF VALENCY 7
    Jin, Wei
    Tan, Li
    [J]. ARS COMBINATORIA, 2016, 126 : 211 - 220
  • [2] FINITE TWO-DISTANCE-TRANSITIVE DIHEDRANTS
    Jin, Wei
    Tan, Li
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 113 (03) : 386 - 401
  • [3] INFINITE DISTANCE TRANSITIVE GRAPHS OF FINITE VALENCY
    MACPHERSON, HD
    [J]. COMBINATORICA, 1982, 2 (01) : 63 - 69
  • [4] DISTANCE-TRANSITIVE GRAPHS OF VALENCY 5, 6 AND 7
    IVANOV, AA
    IVANOV, AV
    FARADZHEV, IA
    [J]. USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1984, 24 (06): : 67 - 76
  • [5] DISTANCE-TRANSITIVE GRAPHS OF VALENCY-5, VALENCY-6 AND VALENCY-7
    FARADJEV, IA
    IVANOV, AA
    IVANOV, AV
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1986, 7 (04) : 303 - 319
  • [6] DISTANCE-TRANSITIVE GRAPHS OF VALENCY -5
    GARDINER, A
    PRAEGER, CE
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1987, 30 : 73 - 81
  • [7] DISTANCE-TRANSITIVE GRAPHS OF VALENCY 4
    SMITH, DH
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 8 (JUL): : 377 - 384
  • [8] Infinite primitive and distance transitive directed graphs of finite out-valency
    Amato, Daniela
    Evans, David M.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 114 : 33 - 50
  • [9] AN ELEMENTARY CLASSIFICATION OF DISTANCE-TRANSITIVE GRAPHS OF VALENCY 4
    GARDINER, A
    [J]. ARS COMBINATORIA, 1985, 19A (MAY) : 129 - 141
  • [10] Two-geodesic transitive graphs of valency six
    Jin, Wei
    Liu, Wei Jun
    Xu, Shang Jin
    [J]. DISCRETE MATHEMATICS, 2017, 340 (02) : 192 - 200