Positive Jonsson Theories

被引:30
|
作者
Poizat, Bruno [1 ]
Yeshkeyev, Aibat [2 ]
机构
[1] Univ Claude Bernard, Inst Camille Jordan, 43,Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[2] EA Buketov State Univ, Univ St 28, Qaraghandy 100028, Kazakhstan
关键词
Model theory; inductive limit; compactness; Jonsson theory; amalgams;
D O I
10.1007/s11787-018-0185-8
中图分类号
B81 [逻辑学(论理学)];
学科分类号
010104 ; 010105 ;
摘要
This paper is a general introduction to Positive Logic, where only what we call h-inductive sentences are under consideration, allowing the extension to homomorphisms of model-theoric notions which are classically associated to embeddings; in particular, the existentially closed models, that were primitively defined by Abraham Robinson, become here positively closed models. It accounts for recent results in this domain, and is oriented towards the positivisation of Jonsson theories.
引用
收藏
页码:101 / 127
页数:27
相关论文
共 50 条
  • [1] Positive Jonsson Theories
    Bruno Poizat
    Aibat Yeshkeyev
    Logica Universalis, 2018, 12 : 101 - 127
  • [2] Stable properties of companions of positive Jonsson theories
    Yeshkeyev, A. R.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2013, 72 (04): : 30 - 40
  • [3] The similarity of forcing companions of positive Jonsson theories
    Eshkeev, A. R.
    Repkina, I. A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2014, 73 (01): : 39 - 47
  • [4] Small models of positive convex Jonsson theories in the enriched signature
    Eshkeev, A. R.
    Ulbrikht, O. I.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2014, 73 (01): : 47 - 54
  • [5] Connection of Jonsson theory with some Jonsson polygons theories
    Yeshkeyev, A. R.
    Urken, G. A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2019, 95 (03): : 74 - 78
  • [6] Core Jonsson theories
    Yeshkeyev, A. R.
    Issayeva, A. K.
    Popova, N., V
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 97 (01): : 104 - 110
  • [7] Positive algebraically simple models in the class of existentially closed models of convex positive Jonsson theories
    Eshkeev, A. R.
    Zholmagambetova, B. R.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2014, 74 (02): : 63 - 69
  • [8] Delta -jonsson's theories
    Eshkeev, A. R.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2012, 68 (04): : 37 - 41
  • [9] Properties of hybrids of Jonsson theories
    Yeshkeyev, A. R.
    Mussina, N. M.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2018, 92 (04): : 99 - 104
  • [10] The admissibility and similarity of Jonsson theories
    Yeshkeyev, A. R.
    Urken, G. A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2018, 89 (01): : 42 - 48