Genome-wide prediction of human VNTRs

被引:30
|
作者
Näslund, K
Saetre, P
von Salomé, J
Bergström, TF [1 ]
Jareborg, D
Jazin, E
机构
[1] Uppsala Univ, Dept Genet & Pathol, Rudbeck Lab, S-75185 Uppsala, Sweden
[2] Uppsala Univ, Dept Evolut Genom & Systemat, S-75236 Uppsala, Sweden
[3] Uppsala Univ, Linnaeus Ctr Bioinformat, S-75185 Uppsala, Sweden
[4] AstraZeneca R&D, S-15181 Sodertalje, Sweden
关键词
minisatellite; VNTR; Tandem repeat;
D O I
10.1016/j.ygeno.2004.10.009
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Polymorphic minisatellites, also known as variable number of tandem repeats (VNTRs), are tandem repeat regions that show variation in the number of repeat units among chromosomes in a population. Currently, there are no general methods for predicting which minisatellites have a high probability of being polymorphic, given their sequence characteristics. An earlier approach has focused on potentially highly polymorphic and hypervariable minisatellites, which make up only a small fraction of all minisatellites in the human genome. We have developed a model, based on available minisatellite and VNTR sequence data, that predicts the probability that a minisatellite (unit size 6 bp) identified by the computer program Tandem Repeats Finder is polymorphic (VNTR). According to the model, minisatellites with high copy number and high degree of sequence similarity are most likely to be VNTRs. This approach was used to scan the draft sequence of the human genome for VNTRs. A total of 157,549 minisatellite repeats were found, of which 29,224 are predicted to be VNTRs. Contrary to previous results, VNTRs appear to be widespread and abundant throughout the human genome, with an estimated density of 9.1 VNTRs/Mb. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:24 / 35
页数:12
相关论文
共 50 条
  • [1] Genome-wide characterization of human minisatellite VNTRs: population-specific alleles and gene expression differences
    Rasekh, Marzieh Eslami
    Hernandez, Yozen
    Drinan, Samantha D.
    Bass, Juan I. Fuxman
    Benson, Gary
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (08) : 4308 - 4324
  • [2] Genome-wide prediction and analysis of human chromatin boundary elements
    Wang, Jianrong
    Lunyak, Victoria V.
    King Jordan, I.
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (02) : 511 - 529
  • [3] Pseudogenes and Their Genome-Wide Prediction in Plants
    Xiao, Jin
    Sekhwal, Manoj Kumar
    Li, Pingchuan
    Ragupathy, Raja
    Cloutier, Sylvie
    Wang, Xiue
    You, Frank M.
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (12)
  • [4] Genome-wide association mapping and genome-wide prediction of anther extrusion in CIMMYT spring wheat
    Muqaddasi, Quddoos H.
    Reif, Jochen C.
    Li, Zou
    Basnet, Bhoja R.
    Dreisigacker, Susanne
    Roder, Marion S.
    [J]. EUPHYTICA, 2017, 213 (03)
  • [5] Genome-wide association mapping and genome-wide prediction of anther extrusion in CIMMYT spring wheat
    Quddoos H. Muqaddasi
    Jochen C. Reif
    Zou Li
    Bhoja R. Basnet
    Susanne Dreisigacker
    Marion S. Röder
    [J]. Euphytica, 2017, 213
  • [6] Genome-wide in silico prediction of gene expression
    McLeay, Robert C.
    Lesluyes, Tom
    Partida, Gabriel Cuellar
    Bailey, Timothy L.
    [J]. BIOINFORMATICS, 2012, 28 (21) : 2789 - 2796
  • [7] Genome-wide operon prediction in Staphylococcus aureus
    Wang, LS
    Trawick, JD
    Yamamoto, R
    Zamudio, C
    [J]. NUCLEIC ACIDS RESEARCH, 2004, 32 (12) : 3689 - 3702
  • [8] Genome-wide prediction of imprinted murine genes
    Luedi, PP
    Hartemink, AJ
    Jirtle, RL
    [J]. GENOME RESEARCH, 2005, 15 (06) : 875 - 884
  • [9] Genome-wide prediction of genetic interactions in a metazoan
    Onami, Shuichi
    Kitano, Hiroaki
    [J]. BIOESSAYS, 2006, 28 (11) : 1087 - 1090
  • [10] Genome-Wide miRNA Seeds Prediction in Archaea
    Wang, Shengqin
    Xu, Yuming
    Lu, Zuhong
    [J]. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL, 2014, 2014