Meshless local Petrov-Galerkin method with radial basis functions applied to electromagnetics

被引:22
|
作者
Viana, SA [1 ]
Rodger, D [1 ]
Lai, HC [1 ]
机构
[1] Univ Bath, Dept Elect & Elect Engn, Bath BA2 7AY, Avon, England
关键词
Approximation theory - Boundary conditions - Finite element method - Functions - Galerkin methods - Mathematical models - Mechanics - Partial differential equations - Polynomials;
D O I
10.1049/ip-smt:20040860
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Meshless methods are a new class of numerical techniques for solving partial differential equations and have attracted considerable attention in computational mechanics in recent years. Owing to the 'mesh-free' characteristic, these methods offer some advantages over the conventional mesh-based finite-element techniques. A formulation for the meshless local Petrov-Galerkin method is described and its application to electromagnetic modelling investigated.
引用
下载
收藏
页码:449 / 451
页数:3
相关论文
共 50 条
  • [1] A greedy meshless local Petrov-Galerkin methodbased on radial basis functions
    Mirzaei, Davoud
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (03) : 847 - 861
  • [2] Convergence of meshless Petrov-Galerkin method using radial basis functions
    Zhang, Yunxin
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (01) : 307 - 321
  • [3] Application of meshless local Petrov-Galerkin methods in electromagnetics
    Lu, HF
    Jiang, H
    ICEMS 2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1 AND 2, 2003, : 798 - 801
  • [4] The basis of meshless domain discretization: the meshless local Petrov-Galerkin (MLPG) method
    Atluri, S
    Shen, SP
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2005, 23 (1-2) : 73 - 93
  • [5] A wachspress meshless local Petrov-Galerkin method
    Barry, W
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2004, 28 (05) : 509 - 523
  • [6] A meshless local Petrov-Galerkin scaled boundary method
    Deeks, AJ
    Augarde, CE
    COMPUTATIONAL MECHANICS, 2005, 36 (03) : 159 - 170
  • [7] Error assessment in the meshless local Petrov-Galerkin method
    Pannachet, T
    Barry, W
    Askes, H
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 989 - 994
  • [8] On the improvements and applications of the Meshless Local Petrov-Galerkin method
    Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
    不详
    不详
    Tongji Daxue Xuebao, 2006, 5 (603-606):
  • [9] Meshless local Petrov-Galerkin method for plane piezoelectricity
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Garcia-Sanche, F.
    Wünsche, M.
    Computers, Materials and Continua, 2006, 4 (02): : 109 - 117
  • [10] Meshless local Petrov-Galerkin method in anisotropic elasticity
    Sladek, J
    Sladek, V
    Atluri, SN
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2004, 6 (05): : 477 - 489